Ailes Rouges

GP: 55 | W: 16 | L: 33 | T: 5 | P: 38
GF: 155 | GA: 191 | PP%: 17.54% | PK%: 79.44%
DG: Jérémy Côté | Morale : 34 | Moyenne d'Équipe : 64
Prochain matchs #384 vs Wolves
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Keith PrimeauX100.007156657179747372687878707339348939680222500,000$
2Tom FergusX100.006759566373727167617070766671682423660311450,000$
3Stephane MorinX100.006455586671676774677667676255417645650243499,000$
4Martin Straka (R) (A)X100.005244697570696977707870636532369750650213520,000$
5Chris SimonX100.007468456679687065587168766231358828640221495,000$
6Chris KontosX100.006751726773757461586071636972793148640302520,000$
7Ken McRaeX100.007269426974646666616863696035566852630252375,000$
8Scott PearsonX100.006749726876656566627065726232327548630243400,000$
9Joey KocurX100.009388305778666858566462776058524033630291360,000$
10Dwayne NorrisX100.005748697469677067636967656529318149620233402,000$
11Rusty FitzgeraldX100.006050737072595966636960635632369638600211275,000$
12Tony TwistX100.009379426080666854556452715040366820590251225,000$
13Kerry HuffmanX100.005846726776757466637350814853586846670253650,000$
14David ShawX99.006756616177727360546252814867704145660291225,000$
15Tommy SjodinX100.005846716673666875687966726041434838640282580,000$
16Ken Klee (A)X100.006548786478727464546061775527329027630221250,000$
17Brad BombadirX100.006958606377676961576749794533349638630211250,000$
18Tommy AlbelinX100.006946886475676962606646784434424019630291300,000$
Rayé
1Dean EvasonX100.00755568656971706662696874664664950650332425,000$
2Dan VinceletteX100.008175406576616369647467756340486062650262485,000$
3John TuckerX100.005539786168727268606465746256673950640291255,000$
4Todd EwenX100.007567505880656862586461756047475333620273335,000$
5Jason RuffX100.006563556476585963535765546238378120580231311,000$
6Steven RiceX100.006556706378555658675961646234339020580221450,000$
7Scott Scissons (R)X100.005348606875585862586659635625268847580221100,000$
8Randy MollerX100.008778486177788058566342744072733128670301275,000$
9Bryan FogartyX100.005144767372646866606651734936377420620241350,000$
MOYENNE D'ÉQUIPE99.96685762667567686561686171584446643863
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Stephane Beauregard100.00727684818176818179787543486729730
2Darcy Wakaluk99.00787888858663787873827556585522730
Rayé
1Ron Tugnutt100.00818477747871858781787838426019730
2Jimmy Waite100.00727575747457687767727037377520650
MOYENNE D'ÉQUIPE99.7576788179806778817578754446642371
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Mike Keenan73757664889083CAN43295,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nelson EmersonRed WingsRW51172239-91201686139439612.23%6100119.635914402071015965050.00%27400010.7800000310
2Kerry HuffmanAiles Rouges (DET)D5393039-9160377671284812.68%81124423.4871118522150000209110.00%000000.6300000041
3Martin StrakaAiles Rouges (DET)LW55142539-12801976138309110.14%594517.1941216432241123302150.00%8800000.8300000121
4Tom FergusAiles Rouges (DET)C53171835-1037568144136309112.50%11106020.01610163420300031711249.74%114200000.6600000334
5Sean HillRed WingsD351420340140274565304321.54%4082423.569817411470110131010.00%000100.8200000320
6Dan VinceletteAiles Rouges (DET)LW52102434-56951416411943888.40%992017.704913422030112701052.00%7500000.7400001121
7Tommy SjodinAiles Rouges (DET)D551121323320656156193319.64%50103418.81538301160000174010.00%000000.6200000302
8Stephane MorinAiles Rouges (DET)C5510142431151511898328310.20%387215.87246129201111150051.31%99000000.5500010221
9Keith PrimeauAiles Rouges (DET)C2481523-5195246471215311.27%555022.95358171000003910050.28%70600000.8400001103
10Ken McRaeAiles Rouges (DET)RW5591322-762201096281377811.11%984415.36437131400112590041.79%6700000.5200211101
11Joey KocurAiles Rouges (DET)RW55912212111151583057183715.79%1074313.512464660000300247.76%6700000.5700012220
12David ShawAiles Rouges (DET)D5551318-20855122576718367.46%87124322.60347382101012221100.00%000000.2900001100
13Brad BombadirAiles Rouges (DET)D456915-144097352551324.00%3869115.36000514011082000.00%000000.4300000112
14Chris KontosAiles Rouges (DET)LW5331215-510016438017553.75%277814.69044101180001660046.20%15800000.3900000000
15Scott PearsonAiles Rouges (DET)LW556713-14016377110488.45%1160310.970112900011321145.90%6100000.4300000110
16Randy MollerAiles Rouges (DET)D383912013220150262781511.11%4487623.06224201510000139100.00%000000.2700112100
17Ken KleeAiles Rouges (DET)D4011011-338044232914243.45%5172518.1402211880110108100.00%000000.3000000000
18Igor KravchukRed WingsD13189-660221258134.00%1632224.820331647000059000.00%000000.5600000000
19Chris SimonAiles Rouges (DET)LW22639-4160243143132713.95%332614.841015380001201144.20%22400000.5500000002
20Rusty FitzgeraldAiles Rouges (DET)C52459-46077040103410.00%952210.040000101111160044.91%59900000.3400000000
21Dwayne NorrisAiles Rouges (DET)RW55268-6959244217244.76%03366.111125160004390046.72%12200000.4800001001
22Todd EwenAiles Rouges (DET)RW4243722803872082220.00%02315.5000005000001155.56%2700000.6100000110
23Tommy AlbelinAiles Rouges (DET)D24167-31002318102310.00%2135614.8400025000029000.00%000000.3900000001
24Sandis OzolinshRed WingsD2055320223020.00%04120.770000400007000.00%000002.4100000010
25Dean EvasonAiles Rouges (DET)C22132003281225.00%04020.1600004000060034.62%2600001.4900000001
26Tony TwistAiles Rouges (DET)LW7112132017330133.33%08011.52000014000080066.67%900000.5000000000
27John TuckerAiles Rouges (DET)C2011-200161120.00%42914.7900000000000055.88%3400000.6800000000
Stats d'équipe Total ou en Moyenne1050173313486-9681385125012311525463106211.34%5151724816.43589515344224493811292220161148.96%466900110.5600349252221
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Ron TugnuttAiles Rouges (DET)3682520.8803.6819730012110080140.0000344100
2Darcy WakalukAiles Rouges (DET)187730.9102.76104361485340000.0000178102
3Stephane BeauregardAiles Rouges (DET)91200.8913.5230700181650100.0000443000
Stats d'équipe Total ou en Moyenne63163450.8903.3833246118717070240.00005555202


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Brad BombadirAiles Rouges (DET)D211999-02-09 9:08:37 PMNo205 Lbs6 ft1NoNoNo1Pro & Farm250,000$25,000$8,824$No
Bryan FogartyAiles Rouges (DET)D241996-02-09 9:08:37 PMNo185 Lbs6 ft0NoNoNo1Pro & Farm350,000$35,000$12,353$No
Chris KontosAiles Rouges (DET)LW301990-02-09 9:08:37 PMNo195 Lbs6 ft1NoNoNo2Pro & Farm520,000$52,000$18,353$No520,000$
Chris SimonAiles Rouges (DET)LW221998-02-09 9:08:37 PMNo219 Lbs6 ft3NoNoNo1Pro & Farm495,000$495,000$174,706$No
Dan VinceletteAiles Rouges (DET)LW261994-02-09 9:08:37 PMNo200 Lbs6 ft2NoNoNo2Pro & Farm485,000$48,500$17,118$No485,000$
Darcy WakalukAiles Rouges (DET)G271993-02-09 9:08:37 PMNo190 Lbs5 ft11NoNoNo2Pro & Farm850,000$85,000$30,000$No850,000$
David ShawAiles Rouges (DET)D291991-02-09 9:08:37 PMNo204 Lbs6 ft2NoNoNo1Pro & Farm225,000$22,500$7,941$No
Dean EvasonAiles Rouges (DET)C331987-02-09 9:08:37 PMNo175 Lbs5 ft10NoNoNo2Pro & Farm425,000$42,500$15,000$No425,000$
Dwayne NorrisAiles Rouges (DET)RW231997-02-09 9:08:37 PMNo175 Lbs5 ft10NoNoNo3Pro & Farm402,000$40,200$14,188$No402,000$402,000$
Jason RuffAiles Rouges (DET)LW231997-02-09 9:08:37 PMNo203 Lbs6 ft2NoNoNo1Pro & Farm311,000$31,100$10,976$No
Jimmy WaiteAiles Rouges (DET)G241996-02-09 9:08:37 PMNo180 Lbs6 ft1NoNoNo1Pro & Farm380,000$38,000$13,412$No
Joey KocurAiles Rouges (DET)RW291991-02-09 9:08:37 PMNo220 Lbs6 ft0NoNoNo1Pro & Farm360,000$36,000$12,706$No
John TuckerAiles Rouges (DET)C291991-02-09 9:08:37 PMNo185 Lbs6 ft0NoNoNo1Pro & Farm255,000$25,500$9,000$No
Keith PrimeauAiles Rouges (DET)C221998-02-09 9:08:37 PMNo212 Lbs6 ft4NoNoNo2Pro & Farm500,000$500,000$176,471$No500,000$
Ken KleeAiles Rouges (DET)D221998-02-09 9:08:37 PMNo212 Lbs6 ft1NoNoNo1Pro & Farm250,000$25,000$8,824$No
Ken McRaeAiles Rouges (DET)RW251995-02-09 9:08:37 PMNo195 Lbs6 ft1NoNoNo2Pro & Farm375,000$37,500$13,235$No375,000$
Kerry HuffmanAiles Rouges (DET)D251995-02-09 9:08:37 PMNo202 Lbs6 ft2NoNoNo3Pro & Farm650,000$65,000$22,941$No650,000$650,000$
Martin StrakaAiles Rouges (DET)LW211999-02-09 9:08:37 PMYes175 Lbs5 ft10NoNoNo3Pro & Farm520,000$52,000$18,353$No520,000$520,000$
Randy MollerAiles Rouges (DET)D301990-02-09 9:08:37 PMNo205 Lbs6 ft2NoNoNo1Pro & Farm275,000$27,500$9,706$No
Ron TugnuttAiles Rouges (DET)G261994-02-09 9:08:37 PMNo156 Lbs5 ft11NoNoNo2Pro & Farm720,000$72,000$25,412$No720,000$
Rusty FitzgeraldAiles Rouges (DET)C211999-02-09 9:08:37 PMNo185 Lbs6 ft1NoNoNo1Pro & Farm275,000$27,500$9,706$No
Scott PearsonAiles Rouges (DET)LW241996-02-09 9:08:37 PMNo205 Lbs6 ft1NoNoNo3Pro & Farm400,000$40,000$14,118$No400,000$400,000$
Scott ScissonsAiles Rouges (DET)C221998-02-09 9:08:37 PMYes201 Lbs6 ft1NoNoNo1Pro & Farm100,000$10,000$3,529$No
Stephane BeauregardAiles Rouges (DET)G251995-02-09 9:08:37 PMNo190 Lbs5 ft11NoNoNo1Pro & Farm530,000$53,000$18,706$No
Stephane MorinAiles Rouges (DET)C241996-02-09 9:08:37 PMNo175 Lbs6 ft1NoNoNo3Pro & Farm499,000$49,900$17,612$No499,000$499,000$
Steven RiceAiles Rouges (DET)RW221998-02-09 9:08:37 PMNo223 Lbs6 ft0NoNoNo1Pro & Farm450,000$45,000$15,882$No
Todd EwenAiles Rouges (DET)RW271993-02-09 9:08:37 PMNo230 Lbs6 ft3NoNoNo3Pro & Farm335,000$33,500$11,824$No335,000$335,000$
Tom FergusAiles Rouges (DET)C311989-02-09 9:08:37 PMNo200 Lbs6 ft0NoNoNo1Pro & Farm450,000$45,000$15,882$No
Tommy AlbelinAiles Rouges (DET)D291991-02-09 9:08:37 PMNo202 Lbs6 ft1NoNoNo1Pro & Farm300,000$30,000$10,588$No
Tommy SjodinAiles Rouges (DET)D281992-02-09 9:08:37 PMNo195 Lbs6 ft0NoNoNo2Pro & Farm580,000$58,000$20,471$No580,000$
Tony TwistAiles Rouges (DET)LW251995-02-09 9:08:37 PMNo230 Lbs6 ft1NoNoNo1Pro & Farm225,000$22,500$7,941$No
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
3125.45198 Lbs6 ft11.65411,032$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Martin StrakaKeith PrimeauTony Twist35122
2Chris KontosTom FergusJoey Kocur30122
3Chris SimonStephane MorinKen McRae20122
4Scott PearsonRusty FitzgeraldDwayne Norris15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Kerry HuffmanDavid Shaw35122
2Tommy SjodinKen Klee30122
3Brad BombadirTommy Albelin20122
4Kerry HuffmanDavid Shaw15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Martin StrakaKeith PrimeauTony Twist60122
2Chris KontosTom FergusJoey Kocur40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Kerry HuffmanDavid Shaw60122
2Tommy SjodinKen Klee40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Stephane MorinScott Pearson60122
2Rusty FitzgeraldChris Simon40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Kerry HuffmanDavid Shaw60122
2Tommy SjodinKen Klee40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Rusty Fitzgerald60122Kerry HuffmanDavid Shaw60122
2Chris Simon40122Tommy SjodinKen Klee40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Keith PrimeauMartin Straka60122
2Tom FergusStephane Morin40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Kerry HuffmanDavid Shaw60122
2Tommy SjodinKen Klee40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Martin StrakaKeith PrimeauTony TwistKerry HuffmanDavid Shaw
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Martin StrakaKeith PrimeauTony TwistKerry HuffmanDavid Shaw
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Chris Simon, Scott Pearson, Ken McRaeChris Simon, Scott PearsonKen McRae
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Brad Bombadir, Tommy Albelin, Tommy SjodinBrad BombadirTommy Albelin, Tommy Sjodin
Tirs de Pénalité
Keith Primeau, Tony Twist, Tom Fergus, Stephane Morin, Martin Straka
Gardien
#1 : Darcy Wakaluk, #2 : Stephane Beauregard


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1As613101001720-31010000035-2512101001415-140.33317345100495746317141645851116169529213535514.29%33972.73%1845176347.93%979197449.59%43087249.31%12558201359436720356
2Banshees40310000916-72011000057-22020000049-510.12591524004957463954164585111612836667715213.33%24387.50%0845176347.93%979197449.59%43087249.31%12558201359436720356
3Canadiens3020100078-1100010004312020000035-220.3337142100495746374416458511168431466723521.74%22672.73%0845176347.93%979197449.59%43087249.31%12558201359436720356
4Chiefs21100000541110000004221010000012-120.500581300495746341416458511165114144413215.38%7185.71%0845176347.93%979197449.59%43087249.31%12558201359436720356
5Citadelles31200000710-32020000049-51100000031220.333712190049574637441645851116912532689111.11%15380.00%0845176347.93%979197449.59%43087249.31%12558201359436720356
6Croque-Morts615000001829-1130300000917-831200000912-320.16718335110495746315041645851116214688412729620.69%401367.50%1845176347.93%979197449.59%43087249.31%12558201359436720356
7Harvard4310000015873210000010731100000051460.7501528430049574631194164585111610834619021628.57%24291.67%0845176347.93%979197449.59%43087249.31%12558201359436720356
8Isotopes3021000047-31010000034-12011000013-210.167471100495746381416458511166919476720315.00%16381.25%0845176347.93%979197449.59%43087249.31%12558201359436720356
9Pacifiques de la route512110001619-331101000121112011000048-450.50016284400495746312341645851116185437410118422.22%36877.78%0845176347.93%979197449.59%43087249.31%12558201359436720356
10Riverman30210000610-41010000023-12011000047-310.1676111700495746384416458511168724506611218.18%19573.68%1845176347.93%979197449.59%43087249.31%12558201359436720356
11Snipers312000001091211000008531010000024-220.333101929004957463744164585111610829327113215.38%16287.50%0845176347.93%979197449.59%43087249.31%12558201359436720356
12Spoonman's624000001624-8422000001414020200000210-840.33316304611495746314841645851116196458116329413.79%35877.14%0845176347.93%979197449.59%43087249.31%12558201359436720356
Total55133353100155191-3627816120008798-1128517411006893-25380.345155284439414957463140141645851116171147780312202684717.54%3216679.44%3845176347.93%979197449.59%43087249.31%12558201359436720356
13Wolves724010002527-231200000911-2412010001616060.429254570204957463167416458511162215712414432515.63%34391.18%0845176347.93%979197449.59%43087249.31%12558201359436720356
_Since Last GM Reset55183303100155191-3627816120008798-11281017-111006893-25430.391155284439414957463140141645851116171147780312202684717.54%3216679.44%3845176347.93%979197449.59%43087249.31%12558201359436720356
_Vs Conference309180210092114-221339010004352-91769011004962-13230.38392170262304957463769416458511169842734566441382417.39%1784077.53%3845176347.93%979197449.59%43087249.31%12558201359436720356
_Vs Division19512011006076-16716000002133-121246011003943-4130.3426011217230495746348841645851116604177300406961616.67%1072576.64%2845176347.93%979197449.59%43087249.31%12558201359436720356

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
5538L115528443914011711477803122041
Tous les Matchs
GPWLOTWOTL TGFGA
551333315155191
Matchs locaux
GPWLOTWOTL TGFGA
278162018798
Matchs Éxtérieurs
GPWLOTWOTL TGFGA
285171146893
Derniers 10 Matchs
WLOTWOTL T
35101
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2684717.54%3216679.44%3
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
416458511164957463
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
845176347.93%979197449.59%43087249.31%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
12558201359436720356


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-09-215Ailes Rouges5Wolves3WSommaire du Match
2 - 2020-09-2210Wolves5Ailes Rouges3LSommaire du Match
4 - 2020-09-2420Ailes Rouges3Wolves4LSommaire du Match
5 - 2020-09-2523Ailes Rouges4As5LXSommaire du Match
6 - 2020-09-2626Croque-Morts8Ailes Rouges5LSommaire du Match
7 - 2020-09-2735Ailes Rouges0Croque-Morts3LSommaire du Match
9 - 2020-09-2941Wolves4Ailes Rouges3LSommaire du Match
10 - 2020-09-3051Harvard3Ailes Rouges1LSommaire du Match
11 - 2020-10-0158Banshees3Ailes Rouges3TXSommaire du Match
14 - 2020-10-0466Ailes Rouges3As1WSommaire du Match
15 - 2020-10-0572Ailes Rouges1Pacifiques de la route5LSommaire du Match
17 - 2020-10-0779Banshees4Ailes Rouges2LSommaire du Match
19 - 2020-10-0986Ailes Rouges1Chiefs2LSommaire du Match
21 - 2020-10-1192Harvard3Ailes Rouges4WSommaire du Match
23 - 2020-10-13100Ailes Rouges3Croque-Morts5LSommaire du Match
25 - 2020-10-15106As5Ailes Rouges3LSommaire du Match
27 - 2020-10-17114Ailes Rouges6Croque-Morts4WSommaire du Match
29 - 2020-10-19118Ailes Rouges4Wolves6LSommaire du Match
31 - 2020-10-21125Harvard1Ailes Rouges5WSommaire du Match
33 - 2020-10-23134Snipers2Ailes Rouges1LSommaire du Match
35 - 2020-10-25140Ailes Rouges5Harvard1WSommaire du Match
37 - 2020-10-27148Croque-Morts5Ailes Rouges1LSommaire du Match
39 - 2020-10-29156Ailes Rouges3Banshees7LSommaire du Match
42 - 2020-11-01163Citadelles4Ailes Rouges1LSommaire du Match
43 - 2020-11-02171Spoonman's6Ailes Rouges4LSommaire du Match
44 - 2020-11-03177Ailes Rouges1As2LSommaire du Match
46 - 2020-11-05179Ailes Rouges2Spoonman's5LSommaire du Match
47 - 2020-11-06190Ailes Rouges2Snipers4LSommaire du Match
48 - 2020-11-07195Citadelles5Ailes Rouges3LSommaire du Match
50 - 2020-11-09204Ailes Rouges1Banshees2LSommaire du Match
52 - 2020-11-11207Spoonman's3Ailes Rouges5WSommaire du Match
53 - 2020-11-12219Croque-Morts4Ailes Rouges3LSommaire du Match
55 - 2020-11-14225Ailes Rouges1Canadiens2LSommaire du Match
56 - 2020-11-15229Ailes Rouges1Riverman4LSommaire du Match
58 - 2020-11-17238Wolves2Ailes Rouges3WSommaire du Match
59 - 2020-11-18244Ailes Rouges4Wolves3WXSommaire du Match
61 - 2020-11-20251Isotopes4Ailes Rouges3LSommaire du Match
62 - 2020-11-21258Ailes Rouges3Riverman3TXSommaire du Match
64 - 2020-11-23263Riverman3Ailes Rouges2LSommaire du Match
65 - 2020-11-24270Ailes Rouges3Citadelles1WSommaire du Match
67 - 2020-11-26278Pacifiques de la route2Ailes Rouges5WSommaire du Match
68 - 2020-11-27286Ailes Rouges3Pacifiques de la route3TXSommaire du Match
70 - 2020-11-29291Ailes Rouges0Spoonman's5LSommaire du Match
71 - 2020-11-30295Pacifiques de la route3Ailes Rouges4WXSommaire du Match
72 - 2020-12-01304Ailes Rouges1Isotopes1TXSommaire du Match
73 - 2020-12-02308Canadiens3Ailes Rouges4WXSommaire du Match
74 - 2020-12-03317Ailes Rouges5As5TXSommaire du Match
76 - 2020-12-05324Chiefs2Ailes Rouges4WSommaire du Match
78 - 2020-12-07332Ailes Rouges0Isotopes2LSommaire du Match
79 - 2020-12-08338Spoonman's5Ailes Rouges2LSommaire du Match
80 - 2020-12-09349Spoonman's0Ailes Rouges3WSommaire du Match
83 - 2020-12-12358Pacifiques de la route6Ailes Rouges3LSommaire du Match
84 - 2020-12-13363Ailes Rouges1As2LSommaire du Match
86 - 2020-12-15372Snipers3Ailes Rouges7WSommaire du Match
88 - 2020-12-17373Ailes Rouges2Canadiens3LSommaire du Match
90 - 2020-12-19384Ailes Rouges-Wolves-
92 - 2020-12-21388Ailes Rouges-Snipers-
94 - 2020-12-23394Canadiens-Ailes Rouges-
96 - 2020-12-25406Isotopes-Ailes Rouges-
98 - 2020-12-27414As-Ailes Rouges-
100 - 2020-12-29415Ailes Rouges-Canadiens-
101 - 2020-12-30427Ailes Rouges-Croque-Morts-
103 - 2021-01-01430Canadiens-Ailes Rouges-
104 - 2021-01-02436Ailes Rouges-Spoonman's-
106 - 2021-01-04447Croque-Morts-Ailes Rouges-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
109 - 2021-01-07453Ailes Rouges-Citadelles-
110 - 2021-01-08460Riverman-Ailes Rouges-
112 - 2021-01-10470Citadelles-Ailes Rouges-
114 - 2021-01-12477Ailes Rouges-Harvard-
115 - 2021-01-13483Ailes Rouges-Isotopes-
116 - 2021-01-14487Harvard-Ailes Rouges-
118 - 2021-01-16495Ailes Rouges-Riverman-
119 - 2021-01-17502Chiefs-Ailes Rouges-
120 - 2021-01-18508Ailes Rouges-Isotopes-
121 - 2021-01-19512Ailes Rouges-Banshees-
122 - 2021-01-20518Chiefs-Ailes Rouges-
123 - 2021-01-21529Ailes Rouges-Snipers-
124 - 2021-01-22531As-Ailes Rouges-
127 - 2021-01-25543As-Ailes Rouges-
130 - 2021-01-28555Wolves-Ailes Rouges-
132 - 2021-01-30563Wolves-Ailes Rouges-
134 - 2021-02-01570Ailes Rouges-Chiefs-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
14 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
942,852$ 2,169,700$ 2,169,700$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
2,169,700$ 942,852$ 31 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 48 16,652$ 799,296$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT