Chiefs

GP: 17 | W: 6 | L: 8 | T: 2 | P: 15
GF: 45 | GA: 54 | PP%: 19.77% | PK%: 80.65%
DG: Christian Cheminais | Morale : 48 | Moyenne d'Équipe : 65
Prochain matchs #124 vs Snipers
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Mark LambX100.007661676869757675687564785965663952680
2Brian Propp (A)X100.00655172637163637667757866728182152680
3Jiri Dopita (R)X100.004537766678676880718176696844486852670
4Randy Cunneyworth (C)X100.007262586770717169626665806378851752670
5Bobby HolikX100.007458656781747671677369826830328952670
6Brad DalgarnoX100.006748836279707271627267816051516152660
7Jim DowdX100.005744776873707267657568786439486152650
8Mick VukotaX100.008983376475818358626955825256545352650
9Shane Churla (A)X100.009892276475747464627052775065704750650
10Michel Picard (R)X100.005644817173666869636968646640517652630
11Donald Brashear (R)X100.008895306785817362526361706035458055630
12Jeff Odgers (R)X100.009395306085807763546262606637557052620
13Glenn FeatherstoneX100.008779436679737358525749854744516852670
14Donald DufresneX100.007153716376697069626957835252476052660
15Bob BeersX100.007351786674697064647655805247476052660
16Jason YorkX100.006449727175727472657568756233348252650
17Jiri Slegr (R)X100.005846736677717370647364826036348952650
18Frantisek KuceraX100.006450766775727463627250784827336852640
Rayé
1Chris TancillX100.007156717071707173597372696443506833660
2Len BarrieX100.005959496975687068647472676841547433650
3Nick KypreosX100.009285366277747662616460805852505533640
4Rob Niedermayer (R)X100.007060757362777570806361776335458033640
5Rob RayX100.009089256476666860565663816232326836610
6Marc PotvinX100.007469516174636659586151705040425333580
7Grant MarshallX100.006355686470606257566057675627279833570
8Davis Payne (R)X100.007770496374606252505460586033288233560
MOYENNE D'ÉQUIPE100.00736359667571716662686275604549644664
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Felix Potvin (R)100.00737981808176848582787638388847730
2Mike Dunham (R)100.00687676787372828279717129359747690
Rayé
1Jamie McLennan100.00687271747060667667696738348933630
MOYENNE D'ÉQUIPE100.0070767677756977817673713536914268
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Marc Crawford78757976748589CAN33295,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jiri DopitaChiefs (QUE)C177613-40003440123317.50%132419.0835811630003511052.15%32600000.8000000200
2Jason YorkChiefs (QUE)D175611-312014252452220.83%2337321.993361763000063110.00%000000.5900000002
3Randy CunneyworthChiefs (QUE)LW173811-4806253815257.89%232619.231569640001530054.67%7500000.6700000000
4Mick VukotaChiefs (QUE)RW174711-330067131961921.05%126515.64235665000000043.75%1600010.8300000100
5Donald DufresneChiefs (QUE)D172810-4407392081510.00%1540723.962131572000073010.00%000000.4900000010
6Bob BeersChiefs (QUE)D172810-31003215991322.22%2637321.98145664000063000.00%000000.5400000000
7Frantisek KuceraChiefs (QUE)D17257-1120271391522.22%826315.4920232000032010.00%000000.5300000100
8Bobby HolikChiefs (QUE)C175271001293342715.15%217610.3800005000011048.91%18400000.7900000000
9Brad DalgarnoChiefs (QUE)RW17167-4409184410332.27%327115.991231672000000054.84%3100000.5200000010
10Mark LambChiefs (QUE)C17437-3180394730113313.33%437221.900224730001851047.84%37000000.3800000120
11Jiri SlegrChiefs (QUE)D17066-12001820131130.00%1824514.420221400004000.00%000000.4900000010
12Jim DowdChiefs (QUE)C17156-200028297133.45%11559.1602203000000048.10%15800000.7700000001
13Brian ProppChiefs (QUE)LW17426-42016283072213.33%337021.812027720000820053.24%21600000.3200000102
14Donald BrashearChiefs (QUE)LW170552155229175100.00%318811.09000000000230040.00%1500000.5300100000
15Glenn FeatherstoneChiefs (QUE)D17213-436071131541013.33%1439623.310111173000062100.00%000000.1500000011
16Michel PicardChiefs (QUE)LW17213-2000142091410.00%11508.8400000000031030.00%1000000.4000000000
17Jeff OdgersChiefs (QUE)RW17112212033182812.50%21639.6000000000000025.00%800000.2500000000
18Rob RayChiefs (QUE)RW3011160710010.00%0268.700000000000000.00%000000.7700000000
19Shane ChurlaChiefs (QUE)RW14011-314019511440.00%11208.6100000000000055.56%900000.1700000000
Stats d'équipe Total ou en Moyenne3064582127-39203538837740912032011.00%128497216.2517304710670300056016350.00%141800010.5100100666
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Felix PotvinChiefs (QUE)145710.8893.1378500413700100.0000134000
2Mike DunhamChiefs (QUE)51210.9083.2024400131420100.0000413110
Stats d'équipe Total ou en Moyenne196920.8953.15102900545120200.00001717110


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Bob BeersChiefs (QUE)D261994-02-09 9:08:37 PMNo200 Lbs6 ft2NoNoNo4Pro & Farm560,000$56,000$43,647$No560,000$560,000$560,000$
Bobby HolikChiefs (QUE)C221998-02-09 9:08:37 PMNo225 Lbs6 ft3NoNoNo1Pro & Farm550,000$55,000$42,868$No
Brad DalgarnoChiefs (QUE)RW261994-02-09 9:08:37 PMNo215 Lbs6 ft3NoNoNo1Pro & Farm185,000$18,500$14,419$No
Brian ProppChiefs (QUE)LW341986-02-09 9:08:37 PMNo190 Lbs5 ft9NoNoNo1Pro & Farm600,000$60,000$46,765$No
Chris TancillChiefs (QUE)RW251995-02-09 9:08:37 PMNo185 Lbs5 ft10NoNoNo1Pro & Farm531,000$53,100$41,387$No
Davis PayneChiefs (QUE)RW231997-02-09 9:08:37 PMYes190 Lbs6 ft1NoNoNo2Pro & Farm150,000$15,000$11,691$No150,000$
Donald BrashearChiefs (QUE)LW221998-08-11 9:38:29 AMYes237 Lbs6 ft3NoNoNo3Pro & Farm250,000$25,000$19,485$No250,000$250,000$
Donald DufresneChiefs (QUE)D261994-02-09 9:08:37 PMNo206 Lbs6 ft1NoNoNo2Pro & Farm468,000$46,800$36,476$No468,000$
Felix PotvinChiefs (QUE)G221998-02-09 9:08:37 PMYes190 Lbs6 ft1NoNoNo1Pro & Farm400,000$40,000$31,176$No
Frantisek KuceraChiefs (QUE)D251995-02-09 9:08:37 PMNo205 Lbs6 ft2NoNoNo2Pro & Farm400,000$40,000$31,176$No400,000$
Glenn FeatherstoneChiefs (QUE)D251995-02-09 9:08:37 PMNo215 Lbs6 ft4NoNoNo3Pro & Farm635,000$63,500$49,493$No635,000$635,000$
Grant MarshallChiefs (QUE)RW202000-02-09 9:08:37 PMNo185 Lbs6 ft1NoNoNo3Pro & Farm500,000$50,000$38,971$No500,000$500,000$
Jamie McLennanChiefs (QUE)G221998-02-09 9:08:37 PMNo190 Lbs6 ft0NoNoNo1Pro & Farm150,000$15,000$11,691$No
Jason YorkChiefs (QUE)D231997-02-09 9:08:37 PMNo200 Lbs6 ft2NoNoNo1Pro & Farm250,000$25,000$19,485$No
Jeff OdgersChiefs (QUE)RW251995-08-11 9:32:17 AMYes200 Lbs6 ft0NoNoNo3Pro & Farm250,000$25,000$19,485$No250,000$250,000$
Jim DowdChiefs (QUE)C261994-02-09 9:08:37 PMNo190 Lbs6 ft1NoNoNo2Pro & Farm200,000$20,000$15,588$No200,000$
Jiri DopitaChiefs (QUE)C251995-02-09 9:08:37 PMYes213 Lbs6 ft3NoNoNo3Pro & Farm400,000$40,000$31,176$No400,000$400,000$
Jiri SlegrChiefs (QUE)D221998-02-09 9:08:37 PMYes216 Lbs6 ft1NoNoNo1Pro & Farm380,000$38,000$29,618$No
Len BarrieChiefs (QUE)C241996-02-09 9:08:37 PMNo200 Lbs6 ft1NoNoNo1Pro & Farm295,000$29,500$22,993$No
Marc PotvinChiefs (QUE)C271993-02-09 9:08:37 PMNo200 Lbs6 ft1NoNoNo1Pro & Farm200,000$20,000$15,588$No
Mark LambChiefs (QUE)C291991-02-09 9:08:37 PMNo179 Lbs5 ft9NoNoNo1Pro & Farm458,000$45,800$35,697$No
Michel PicardChiefs (QUE)LW241996-02-09 9:08:37 PMYes190 Lbs5 ft11NoNoNo2Pro & Farm450,000$45,000$35,074$No450,000$
Mick VukotaChiefs (QUE)RW271993-02-09 9:08:37 PMNo195 Lbs6 ft2NoNoNo1Pro & Farm365,000$36,500$28,449$No
Mike DunhamChiefs (QUE)G211999-02-09 9:08:37 PMYes195 Lbs6 ft3NoNoNo1Pro & Farm400,000$40,000$31,176$No
Nick KypreosChiefs (QUE)LW271993-02-09 9:08:37 PMNo210 Lbs6 ft0NoNoNo2Pro & Farm450,000$45,000$35,074$No450,000$
Randy CunneyworthChiefs (QUE)LW321988-02-09 9:08:37 PMNo180 Lbs6 ft0NoNoNo2Pro & Farm600,000$60,000$46,765$No600,000$
Rob NiedermayerChiefs (QUE)C202000-08-11 9:28:24 AMYes200 Lbs6 ft2NoNoNo3Pro & Farm250,000$25,000$19,485$No250,000$250,000$
Rob RayChiefs (QUE)RW251995-02-09 9:08:37 PMNo216 Lbs6 ft0NoNoNo1Pro & Farm350,000$35,000$27,279$No
Shane ChurlaChiefs (QUE)RW281992-02-09 9:08:37 PMNo201 Lbs6 ft1NoNoNo3Pro & Farm500,000$50,000$38,971$No500,000$500,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2924.93201 Lbs6 ft11.83385,414$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Brian ProppMark LambBrad Dalgarno30113
2Randy CunneyworthJiri DopitaMick Vukota28122
3Donald BrashearBobby HolikJeff Odgers21311
4Michel PicardJim DowdShane Churla21122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Glenn FeatherstoneDonald Dufresne35122
2Bob BeersJason York30122
3Jiri SlegrFrantisek Kucera20122
4Glenn FeatherstoneDonald Dufresne15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Brian ProppMark LambBrad Dalgarno60122
2Randy CunneyworthJiri DopitaMick Vukota40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Glenn FeatherstoneDonald Dufresne60122
2Bob BeersJason York40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Brian ProppMark Lamb60122
2Randy CunneyworthJiri Dopita40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Glenn FeatherstoneDonald Dufresne60122
2Bob BeersJason York40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Brian Propp60122Glenn FeatherstoneDonald Dufresne60122
2Mark Lamb40122Bob BeersJason York40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Brian ProppMark Lamb60122
2Randy CunneyworthJiri Dopita40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Glenn FeatherstoneDonald Dufresne60122
2Bob BeersJason York40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Brian ProppMark LambBrad DalgarnoGlenn FeatherstoneDonald Dufresne
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Brian ProppMark LambBrad DalgarnoGlenn FeatherstoneDonald Dufresne
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Bobby Holik, Jim Dowd, Donald BrashearBobby Holik, Jim DowdDonald Brashear
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Jiri Slegr, Frantisek Kucera, Bob BeersJiri SlegrFrantisek Kucera, Bob Beers
Tirs de Pénalité
Brian Propp, Mark Lamb, Randy Cunneyworth, Jiri Dopita, Brad Dalgarno
Gardien
#1 : Felix Potvin, #2 : Mike Dunham


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Ailes Rouges11000000211110000002110000000000021.0002460014191202111915213351741430300.00%70100.00%028355650.90%29659349.92%13026948.33%408273398132224112
2As1010000034-1000000000001010000034-100.000369001419120241191521335311020283133.33%8187.50%028355650.90%29659349.92%13026948.33%408273398132224112
3Banshees21010000945210100009450000000000030.7509162500141912052119152133559814449333.33%60100.00%028355650.90%29659349.92%13026948.33%408273398132224112
4Canadiens320100001073220000007431001000033050.8331017270014191207911915213358125426920525.00%20480.00%028355650.90%29659349.92%13026948.33%408273398132224112
5Citadelles1010000037-41010000037-40000000000000.0003580014191202511915213353391912300.00%7357.14%028355650.90%29659349.92%13026948.33%408273398132224112
6Croque-Morts2110000068-2000000000002110000068-220.500611170014191205311915213355811124912216.67%5180.00%028355650.90%29659349.92%13026948.33%408273398132224112
7Harvard3110010079-21010000002-22100010077030.500713200014191206511915213359830247116425.00%12375.00%028355650.90%29659349.92%13026948.33%408273398132224112
8Riverman20200000410-61010000027-51010000023-100.0004812001419120481191521335751934407228.57%16381.25%028355650.90%29659349.92%13026948.33%408273398132224112
9Spoonman's2020000014-31010000013-21010000001-100.000123001419120421191521335601224451300.00%12375.00%028355650.90%29659349.92%13026948.33%408273398132224112
Total1768201004554-9944100002428-4824101002126-5150.44145821270014191204091191521335512128203388861719.77%931880.65%028355650.90%29659349.92%13026948.33%408273398132224112
_Since Last GM Reset1788001004554-9944100002428-4844-101002126-5170.50045821270014191204091191521335512128203388861719.77%931880.65%028355650.90%29659349.92%13026948.33%408273398132224112
_Vs Conference1164001003031-17331000020200431-101001011-1130.591305383001419120263119152133533184123241611219.67%571377.19%028355650.90%29659349.92%13026948.33%408273398132224112
_Vs Division843001001820-24220000089-1421001001011-190.5631832500014191201861191521335239679018549918.37%441077.27%028355650.90%29659349.92%13026948.33%408273398132224112

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
1715L1458212740951212820338800
Tous les Matchs
GPWLOTWOTL TGFGA
17680124554
Matchs locaux
GPWLOTWOTL TGFGA
9440012428
Matchs Éxtérieurs
GPWLOTWOTL TGFGA
8240112126
Derniers 10 Matchs
WLOTWOTL T
54001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
861719.77%931880.65%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
11915213351419120
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
28355650.90%29659349.92%13026948.33%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
408273398132224112


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-09-214Riverman7Chiefs2LSommaire du Match
3 - 2020-09-2315Spoonman's3Chiefs1LSommaire du Match
4 - 2020-09-2418Chiefs4Croque-Morts3WSommaire du Match
6 - 2020-09-2628Chiefs2Harvard3LXSommaire du Match
7 - 2020-09-2734Harvard2Chiefs0LSommaire du Match
9 - 2020-09-2943Citadelles7Chiefs3LSommaire du Match
10 - 2020-09-3049Chiefs3Canadiens3TXSommaire du Match
11 - 2020-10-0156Chiefs0Spoonman's1LSommaire du Match
13 - 2020-10-0362Banshees1Chiefs6WSommaire du Match
15 - 2020-10-0570Chiefs5Harvard4WSommaire du Match
17 - 2020-10-0775Canadiens2Chiefs3WSommaire du Match
19 - 2020-10-0986Ailes Rouges1Chiefs2WSommaire du Match
21 - 2020-10-1189Chiefs2Croque-Morts5LSommaire du Match
23 - 2020-10-1399Banshees3Chiefs3TXSommaire du Match
26 - 2020-10-16108Chiefs2Riverman3LSommaire du Match
27 - 2020-10-17112Canadiens2Chiefs4WSommaire du Match
29 - 2020-10-19121Chiefs3As4LSommaire du Match
31 - 2020-10-21124Chiefs-Snipers-
33 - 2020-10-23132Canadiens-Chiefs-
35 - 2020-10-25142Croque-Morts-Chiefs-
37 - 2020-10-27145Chiefs-As-
39 - 2020-10-29154Snipers-Chiefs-
41 - 2020-10-31160Chiefs-Wolves-
42 - 2020-11-01169Chiefs-Wolves-
44 - 2020-11-03175Banshees-Chiefs-
46 - 2020-11-05184As-Chiefs-
47 - 2020-11-06189Chiefs-Harvard-
49 - 2020-11-08198Harvard-Chiefs-
50 - 2020-11-09202Chiefs-Croque-Morts-
52 - 2020-11-11209Chiefs-Harvard-
53 - 2020-11-12216Canadiens-Chiefs-
55 - 2020-11-14224Croque-Morts-Chiefs-
56 - 2020-11-15228Chiefs-Citadelles-
58 - 2020-11-17239Chiefs-Pacifiques de la route-
60 - 2020-11-19246Snipers-Chiefs-
61 - 2020-11-20252Chiefs-Banshees-
63 - 2020-11-22261Harvard-Chiefs-
65 - 2020-11-24267Chiefs-Pacifiques de la route-
66 - 2020-11-25272Wolves-Chiefs-
67 - 2020-11-26282Isotopes-Chiefs-
68 - 2020-11-27287Chiefs-Canadiens-
71 - 2020-11-30296Riverman-Chiefs-
72 - 2020-12-01301Chiefs-Canadiens-
73 - 2020-12-02310Riverman-Chiefs-
74 - 2020-12-03315Chiefs-Riverman-
76 - 2020-12-05324Chiefs-Ailes Rouges-
77 - 2020-12-06328Pacifiques de la route-Chiefs-
78 - 2020-12-07336Chiefs-Spoonman's-
79 - 2020-12-08343Isotopes-Chiefs-
80 - 2020-12-09350Snipers-Chiefs-
82 - 2020-12-11355Chiefs-Croque-Morts-
84 - 2020-12-13360Chiefs-Isotopes-
86 - 2020-12-15366Chiefs-Spoonman's-
88 - 2020-12-17374Spoonman's-Chiefs-
90 - 2020-12-19382Citadelles-Chiefs-
92 - 2020-12-21392Wolves-Chiefs-
94 - 2020-12-23399Chiefs-Pacifiques de la route-
96 - 2020-12-25401Chiefs-Canadiens-
98 - 2020-12-27410Citadelles-Chiefs-
100 - 2020-12-29419Chiefs-Snipers-
101 - 2020-12-30426Spoonman's-Chiefs-
103 - 2021-01-01434Chiefs-Harvard-
104 - 2021-01-02437Chiefs-Isotopes-
106 - 2021-01-04444Banshees-Chiefs-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
109 - 2021-01-07454Harvard-Chiefs-
110 - 2021-01-08458Chiefs-Banshees-
112 - 2021-01-10468Riverman-Chiefs-
113 - 2021-01-11475Chiefs-Spoonman's-
114 - 2021-01-12478Chiefs-Citadelles-
116 - 2021-01-14486As-Chiefs-
117 - 2021-01-15491Chiefs-As-
118 - 2021-01-16498Pacifiques de la route-Chiefs-
119 - 2021-01-17502Chiefs-Ailes Rouges-
121 - 2021-01-19513Spoonman's-Chiefs-
122 - 2021-01-20518Chiefs-Ailes Rouges-
123 - 2021-01-21525Spoonman's-Chiefs-
124 - 2021-01-22533Chiefs-Isotopes-
125 - 2021-01-23535Chiefs-Wolves-
127 - 2021-01-25544Citadelles-Chiefs-
128 - 2021-01-26548Chiefs-Isotopes-
131 - 2021-01-29560Citadelles-Chiefs-
134 - 2021-02-01570Ailes Rouges-Chiefs-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
32 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
267,510$ 1,117,700$ 1,117,700$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
1,117,700$ 267,510$ 29 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 106 8,917$ 945,202$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
19931768201004554-9944100002428-4824101002126-51545821270014191204091191521335512128203388861719.77%931880.65%028355650.90%29659349.92%13026948.33%408273398132224112
Total Saison Régulière1768201004554-9944100002428-4824101002126-51545821270014191204091191521335512128203388861719.77%931880.65%028355650.90%29659349.92%13026948.33%408273398132224112