Riverman

GP: 15 | W: 8 | L: 6 | T: 1 | P: 17
GF: 57 | GA: 49 | PP%: 21.43% | PK%: 77.08%
DG: Patrick Poulin | Morale : 51 | Moyenne d'Équipe : 62
Prochain matchs #108 vs Chiefs
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Randy McKayX98.008677476578828175656967766442446052670
2Shaun Van AllenX99.007467586275777572677870736443415355660
3Yvon CorriveauX100.007563626572676678697973676439376049660
4Bryan EricksonX100.00564084656363637263737467686768955650
5Mike StapletonX99.006547836771667070666966756657565455650
6Kris Draper (R)X100.006150737272666872647265786030288955640
7Jeff NielsenX100.007661666674686671606970666245478155640
8Michael Nylander (R)X100.005241777172707172657469586435329655630
9Valery Bure (R)X100.004538777470666673647371576526299855620
10Dan BylsmaX100.006750736778686859566461735836337555610
11Andrei Nazarov (R)X100.008476496580666664636856725328289755610
12Sergei Brylin (R)X100.005245736971585963606656675428319755580
13Alexander KarpovtsevX100.006346807078707062616759755840398351640
14Jaroslav ModryX100.005645777076717266647257765435358955640
15Chris TherienX100.007056646483707161596652765030308955630
16Richard Matvichuk (R)X100.007263556274697062505850804230309755620
17Alexei Zhitnik (R)X100.005747676774727171647162665828289655610
18Adrian Aucoin (R)X100.005449626976666662576449734730349755610
Rayé
1Peter Ferraro (R)X100.006559557071636461576460615830359735590
2Yan Kaminsky (R)X100.004035787168606061586560625829288940580
3Steve Staios (R)X100.006150717075596159556145654329329635560
4Karl Dykhuis (R)X100.007164576278636457546242774029299035600
5Dmitri Motkov (R)X100.005449637276626461566748684231388835600
6Aaron Ward (R)X100.006152686672606261576348774628289735600
7Michal Sykora (R)X100.006152735980575964526944673228279835580
8Joel Bouchard (R)X100.005049676170575951465035653327309735540
MOYENNE D'ÉQUIPE99.85635368677466676560675870543535844962
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Corey Schwab100.00677076747262707469686529418350640
2Andrew Verner (R)100.00656678767358667566686227279755620
Rayé
MOYENNE D'ÉQUIPE100.0066687775736068756868642834905363
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Ken Hitchcock72777679778387CAN43295,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mike StapletonRiverman (VAN)C156142074064138143115.79%229719.8025717680003391156.60%31800001.3500000131
2Jeff NielsenRiverman (VAN)RW159817616031164193021.95%225116.774372068000002153.85%1300001.3500000111
3Shaun Van AllenRiverman (VAN)C157714260194046122815.22%632321.5334719820000800152.96%35500010.8700000110
4Bryan EricksonRiverman (VAN)LW15661290011546113213.04%125817.221239750004121064.71%1700000.9300000011
5Jaroslav ModryRiverman (VAN)D1557122200142229121917.24%2235423.634262376000062000.00%000000.6800000010
6Chris TherienRiverman (VAN)D153912314010122081415.00%1332721.861671171000065000.00%000000.7300000100
7Randy McKayRiverman (VAN)RW152810-139562244716394.26%537124.7505522790000710040.96%16600000.5400010100
8Richard MatvichukRiverman (VAN)D15371031403592261313.64%2132521.712461471000061000.00%000000.6100000002
9Alexander KarpovtsevRiverman (VAN)D10279318015171121918.18%1023223.28134848000043100.00%000000.7700000101
10Kris DraperRiverman (VAN)C1571812082634112420.59%319713.1400000000091042.02%18800000.8100000002
11Yvon CorriveauRiverman (VAN)LW12538095141329122517.24%221918.273259610004331054.29%3500000.7300000120
12Andrei NazarovRiverman (VAN)LW1507723403517138230.00%119813.21000213000010033.33%1200000.7100000000
13Sergei GoncharCanucksD5145-140101013497.69%712024.14022927000019000.00%000000.8300000000
14Valery BureRiverman (VAN)RW13134100116173165.88%216612.7800000000071046.67%1500000.4800000000
15Alexei ZhitnikRiverman (VAN)D1503348021137140.00%1122114.7500003000018000.00%000000.2700000000
16Adrian AucoinRiverman (VAN)D15033418016134130.00%1822314.8800003000021000.00%000000.2700000000
17Yan KaminskyRiverman (VAN)LW5011-120028160.00%1499.8200000000060033.33%300000.4100000000
18Dan BylsmaRiverman (VAN)RW150110203293100.00%0875.8200000000000025.00%400000.2300000000
19Sergei BrylinRiverman (VAN)C15011200020040.00%0181.2100005000000060.00%1000001.1000000000
20Michael NylanderRiverman (VAN)C15000-2000147170.00%1986.54000000000240051.26%11900000.0000000000
Stats d'équipe Total ou en Moyenne27057100157442101030132444113535612.93%128434016.08213859163759000115778350.36%125500010.7200010798
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Corey SchwabRiverman (VAN)158610.8913.2686420474300010.0000150010
2Andrew VernerRiverman (VAN)10000.9091.5838001110000.0000015000
Stats d'équipe Total ou en Moyenne168610.8913.1990320484410010.00001515010


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Aaron WardRiverman (VAN)D202000-02-09 9:08:37 PMYes200 Lbs6 ft2NoNoNo1Pro & Farm300,000$30,000$24,706$No
Adrian AucoinRiverman (VAN)D202000-02-09 9:08:37 PMYes210 Lbs6 ft2NoNoNo1Pro & Farm400,000$40,000$32,941$No
Alexander KarpovtsevRiverman (VAN)D231997-02-09 9:08:37 PMNo205 Lbs6 ft3NoNoNo1Pro & Farm400,000$40,000$32,941$No
Alexei ZhitnikRiverman (VAN)D211999-02-09 9:08:37 PMYes204 Lbs5 ft11NoNoNo3Pro & Farm375,000$37,500$30,882$No375,000$375,000$
Andrei NazarovRiverman (VAN)LW192001-02-09 9:08:37 PMYes228 Lbs6 ft5NoNoNo2Pro & Farm350,000$35,000$28,824$No350,000$
Andrew VernerRiverman (VAN)G211999-02-09 9:08:37 PMYes194 Lbs6 ft0NoNoNo1Pro & Farm200,000$20,000$16,471$No
Bryan EricksonRiverman (VAN)LW331987-02-09 9:08:37 PMNo170 Lbs5 ft9NoNoNo2Pro & Farm300,000$30,000$24,706$No300,000$
Chris TherienRiverman (VAN)D221998-02-09 9:08:37 PMNo230 Lbs6 ft5NoNoNo1Pro & Farm800,000$80,000$65,882$No
Corey SchwabRiverman (VAN)G231997-02-09 9:08:37 PMNo185 Lbs6 ft0NoNoNo2Pro & Farm150,000$15,000$12,353$No150,000$
Dan BylsmaRiverman (VAN)RW241996-02-09 9:08:37 PMNo215 Lbs6 ft2NoNoNo1Pro & Farm150,000$15,000$12,353$No
Dmitri MotkovRiverman (VAN)D221998-02-09 9:08:37 PMYes198 Lbs6 ft4NoNoNo2Pro & Farm200,000$20,000$16,471$No200,000$
Jaroslav ModryRiverman (VAN)D221998-02-09 9:08:37 PMNo205 Lbs6 ft2NoNoNo2Pro & Farm350,000$35,000$28,824$No350,000$
Jeff NielsenRiverman (VAN)RW231997-02-09 9:08:37 PMNo200 Lbs6 ft0NoNoNo1Pro & Farm150,000$15,000$12,353$No
Joel BouchardRiverman (VAN)D192001-02-09 9:08:37 PMYes183 Lbs6 ft0NoNoNo2Pro & Farm300,000$30,000$24,706$No300,000$
Karl DykhuisRiverman (VAN)D221998-02-09 9:08:37 PMYes214 Lbs6 ft3NoNoNo1Pro & Farm275,000$27,500$22,647$No
Kris DraperRiverman (VAN)C221998-02-09 9:08:37 PMYes188 Lbs5 ft11NoNoNo1Pro & Farm350,000$35,000$28,824$No
Michael NylanderRiverman (VAN)C211999-02-09 9:08:37 PMYes194 Lbs5 ft11NoNoNo2Pro & Farm400,000$40,000$32,941$No400,000$
Michal SykoraRiverman (VAN)D202000-02-09 9:08:37 PMYes223 Lbs6 ft5NoNoNo2Pro & Farm320,000$32,000$26,353$No320,000$
Mike StapletonRiverman (VAN)C271993-02-09 9:08:37 PMNo183 Lbs5 ft10NoNoNo2Pro & Farm525,000$52,500$43,235$No525,000$
Peter FerraroRiverman (VAN)RW202000-02-09 9:08:37 PMYes180 Lbs5 ft10NoNoNo1Pro & Farm325,000$32,500$26,765$No
Randy McKayRiverman (VAN)RW261994-02-09 9:08:37 PMNo210 Lbs6 ft2NoNoNo3Pro & Farm635,000$63,500$52,294$No635,000$635,000$
Richard MatvichukRiverman (VAN)D202000-02-09 9:08:37 PMYes190 Lbs6 ft2NoNoNo3Pro & Farm350,000$35,000$28,824$No350,000$350,000$
Sergei BrylinRiverman (VAN)C192001-02-09 9:08:37 PMYes190 Lbs5 ft10NoNoNo3Pro & Farm495,000$49,500$40,765$No495,000$495,000$
Shaun Van AllenRiverman (VAN)C271993-02-09 9:08:37 PMNo206 Lbs6 ft1NoNoNo1Pro & Farm650,000$65,000$53,529$No
Steve StaiosRiverman (VAN)RW202000-02-09 9:08:37 PMYes200 Lbs6 ft0NoNoNo2Pro & Farm330,000$33,000$27,176$No330,000$
Valery BureRiverman (VAN)RW192001-02-09 9:08:37 PMYes179 Lbs5 ft11NoNoNo3Pro & Farm450,000$45,000$37,059$No450,000$450,000$
Yan KaminskyRiverman (VAN)LW221998-02-09 9:08:37 PMYes176 Lbs6 ft1NoNoNo3Pro & Farm400,000$40,000$32,941$No400,000$400,000$
Yvon CorriveauRiverman (VAN)LW261994-02-09 9:08:37 PMNo194 Lbs6 ft1NoNoNo3Pro & Farm400,000$40,000$32,941$No400,000$400,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2822.25198 Lbs6 ft11.86368,929$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Yvon CorriveauShaun Van AllenRandy McKay35122
2Bryan EricksonMike StapletonJeff Nielsen30122
3Andrei NazarovKris DraperValery Bure20122
4Randy McKayMichael NylanderDan Bylsma15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Alexander KarpovtsevJaroslav Modry35122
2Chris TherienRichard Matvichuk30122
3Alexei ZhitnikAdrian Aucoin20122
4Alexander KarpovtsevJaroslav Modry15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Yvon CorriveauShaun Van AllenRandy McKay60122
2Bryan EricksonMike StapletonJeff Nielsen40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Alexander KarpovtsevJaroslav Modry60122
2Chris TherienRichard Matvichuk40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Randy McKayShaun Van Allen60122
2Yvon CorriveauMike Stapleton40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Alexander KarpovtsevJaroslav Modry60122
2Chris TherienRichard Matvichuk40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Randy McKay60122Alexander KarpovtsevJaroslav Modry60122
2Shaun Van Allen40122Chris TherienRichard Matvichuk40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Randy McKayShaun Van Allen60122
2Yvon CorriveauMike Stapleton40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Alexander KarpovtsevJaroslav Modry60122
2Chris TherienRichard Matvichuk40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Yvon CorriveauShaun Van AllenRandy McKayAlexander KarpovtsevJaroslav Modry
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Yvon CorriveauShaun Van AllenRandy McKayAlexander KarpovtsevJaroslav Modry
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Sergei Brylin, Kris Draper, Michael NylanderSergei Brylin, Kris DraperMichael Nylander
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Alexei Zhitnik, Adrian Aucoin, Chris TherienAlexei ZhitnikAdrian Aucoin, Chris Therien
Tirs de Pénalité
Randy McKay, Shaun Van Allen, Yvon Corriveau, Mike Stapleton, Bryan Erickson
Gardien
#1 : Corey Schwab, #2 : Andrew Verner


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Chiefs11000000725000000000001100000072521.0007132000231717036163126151121512168225.00%50100.00%026951052.75%25851650.00%10522945.85%35524035611619296
2Citadelles21100000770000000000002110000077020.500713200023171704416312615117619333810220.00%12375.00%026951052.75%25851650.00%10522945.85%35524035611619296
3Harvard1010000037-41010000037-40000000000000.00035800231717022163126151140131623200.00%8625.00%026951052.75%25851650.00%10522945.85%35524035611619296
4Isotopes52210000191633210000014862011000058-350.500193352102317170155163126151115138679429620.69%32778.13%026951052.75%25851650.00%10522945.85%35524035611619296
5Pacifiques de la route1010000025-3000000000001010000025-300.000246002317170401631261511281410201000.00%4175.00%026951052.75%25851650.00%10522945.85%35524035611619296
6Snipers21100000440110000002111010000023-120.5004610002317170571631261511501634501417.14%17288.24%026951052.75%25851650.00%10522945.85%35524035611619296
7Spoonman's3300000015872200000010461100000054161.00015264100231717087163126151176234060251040.00%18383.33%026951052.75%25851650.00%10522945.85%35524035611619296
Total158610000574987520000029209834100002829-1170.567571001571023171704411631261511442128212301982121.43%962277.08%026951052.75%25851650.00%10522945.85%35524035611619296
_Since Last GM Reset159600000574987520000029209844000002829-1180.600571001571023171704411631261511442128212301982121.43%962277.08%026951052.75%25851650.00%10522945.85%35524035611619296
_Vs Conference3120000069-3110000002112020000048-420.33361016002317170971631261511783044702414.17%21385.71%026951052.75%25851650.00%10522945.85%35524035611619296
_Vs Division3120000069-3110000002112020000048-420.33361016002317170971631261511783044702414.17%21385.71%026951052.75%25851650.00%10522945.85%35524035611619296

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
1517W15710015744144212821230110
Tous les Matchs
GPWLOTWOTL TGFGA
15860015749
Matchs locaux
GPWLOTWOTL TGFGA
7520002920
Matchs Éxtérieurs
GPWLOTWOTL TGFGA
8340012829
Derniers 10 Matchs
WLOTWOTL T
63001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
982121.43%962277.08%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
16312615112317170
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
26951052.75%25851650.00%10522945.85%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
35524035611619296


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-09-214Riverman7Chiefs2WSommaire du Match
2 - 2020-09-229Harvard7Riverman3LSommaire du Match
3 - 2020-09-2316Riverman2Pacifiques de la route5LSommaire du Match
4 - 2020-09-2421Riverman1Isotopes4LSommaire du Match
6 - 2020-09-2627Isotopes2Riverman6WSommaire du Match
8 - 2020-09-2837Isotopes2Riverman6WSommaire du Match
10 - 2020-09-3047Snipers1Riverman2WSommaire du Match
11 - 2020-10-0154Riverman2Snipers3LSommaire du Match
12 - 2020-10-0260Spoonman's2Riverman5WSommaire du Match
14 - 2020-10-0465Riverman1Citadelles3LSommaire du Match
16 - 2020-10-0673Riverman6Citadelles4WSommaire du Match
18 - 2020-10-0880Isotopes4Riverman2LSommaire du Match
20 - 2020-10-1088Spoonman's2Riverman5WSommaire du Match
22 - 2020-10-1295Riverman4Isotopes4TXSommaire du Match
24 - 2020-10-14102Riverman5Spoonman's4WSommaire du Match
26 - 2020-10-16108Chiefs-Riverman-
28 - 2020-10-18115Riverman-Isotopes-
30 - 2020-10-20122Citadelles-Riverman-
32 - 2020-10-22130Riverman-Spoonman's-
34 - 2020-10-24136Spoonman's-Riverman-
36 - 2020-10-26144Riverman-Isotopes-
38 - 2020-10-28150Citadelles-Riverman-
40 - 2020-10-30158Spoonman's-Riverman-
42 - 2020-11-01166Riverman-As-
43 - 2020-11-02172Isotopes-Riverman-
46 - 2020-11-05180Riverman-Croque-Morts-
47 - 2020-11-06185Riverman-Citadelles-
48 - 2020-11-07192Canadiens-Riverman-
49 - 2020-11-08199Riverman-Citadelles-
51 - 2020-11-10206Isotopes-Riverman-
52 - 2020-11-11213Riverman-Croque-Morts-
55 - 2020-11-14220Snipers-Riverman-
56 - 2020-11-15229Ailes Rouges-Riverman-
58 - 2020-11-17236Riverman-Snipers-
59 - 2020-11-18242Banshees-Riverman-
61 - 2020-11-20249Riverman-Snipers-
62 - 2020-11-21258Ailes Rouges-Riverman-
64 - 2020-11-23263Riverman-Ailes Rouges-
65 - 2020-11-24271As-Riverman-
67 - 2020-11-26280Riverman-Harvard-
68 - 2020-11-27285Wolves-Riverman-
70 - 2020-11-29294Croque-Morts-Riverman-
71 - 2020-11-30296Riverman-Chiefs-
73 - 2020-12-02310Riverman-Chiefs-
74 - 2020-12-03315Chiefs-Riverman-
75 - 2020-12-04323Riverman-Wolves-
77 - 2020-12-06327As-Riverman-
78 - 2020-12-07331Riverman-Pacifiques de la route-
79 - 2020-12-08341Riverman-Pacifiques de la route-
80 - 2020-12-09345Harvard-Riverman-
83 - 2020-12-12357Snipers-Riverman-
84 - 2020-12-13365Riverman-Pacifiques de la route-
86 - 2020-12-15368Canadiens-Riverman-
89 - 2020-12-18379Pacifiques de la route-Riverman-
90 - 2020-12-19385Riverman-Croque-Morts-
92 - 2020-12-21391Riverman-Harvard-
94 - 2020-12-23397Croque-Morts-Riverman-
96 - 2020-12-25403Riverman-Banshees-
98 - 2020-12-27409Harvard-Riverman-
100 - 2020-12-29417Riverman-Banshees-
101 - 2020-12-30424As-Riverman-
103 - 2021-01-01433Riverman-Snipers-
105 - 2021-01-03440Banshees-Riverman-
106 - 2021-01-04443Riverman-Wolves-
108 - 2021-01-06452Pacifiques de la route-Riverman-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
110 - 2021-01-08460Riverman-Ailes Rouges-
112 - 2021-01-10468Riverman-Chiefs-
113 - 2021-01-11471Harvard-Riverman-
115 - 2021-01-13480Riverman-Canadiens-
116 - 2021-01-14485Wolves-Riverman-
118 - 2021-01-16495Ailes Rouges-Riverman-
119 - 2021-01-17501Riverman-Wolves-
120 - 2021-01-18507Riverman-Canadiens-
121 - 2021-01-19514Canadiens-Riverman-
122 - 2021-01-20523Croque-Morts-Riverman-
123 - 2021-01-21527Riverman-Banshees-
125 - 2021-01-23537Riverman-Banshees-
126 - 2021-01-24538Riverman-Pacifiques de la route-
127 - 2021-01-25545Snipers-Riverman-
129 - 2021-01-27554Pacifiques de la route-Riverman-
130 - 2021-01-28556Riverman-As-
134 - 2021-02-01571Pacifiques de la route-Riverman-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
34 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
197,625$ 1,033,000$ 1,033,000$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
1,033,000$ 197,625$ 28 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 112 8,294$ 928,928$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1993158610000574987520000029209834100002829-117571001571023171704411631261511442128212301982121.43%962277.08%026951052.75%25851650.00%10522945.85%35524035611619296
Total Saison Régulière158610000574987520000029209834100002829-117571001571023171704411631261511442128212301982121.43%962277.08%026951052.75%25851650.00%10522945.85%35524035611619296