Isotopes

GP: 18 | W: 6 | L: 8 | T: 3 | P: 16
GF: 51 | GA: 62 | PP%: 14.42% | PK%: 85.85%
DG: Simon Picard | Morale : 47 | Moyenne d'Équipe : 65
Prochain matchs #129 vs Citadelles
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Laurie BoschmanX99.008073496171807970657468746477741152680
2Ted DonatoX98.006246807270757669657268826634367645660
3Bill LindsayX99.007870567274797874646964795832338152660
4Jim CumminsX100.008879456479757669647563755628347551650
5Peter WhiteX100.006751706972697070626970746636367651650
6Andy Brickley (A)X99.006045806472766863636566716680761648650
7Hubie McDonoughX100.006446776769697071657570666456533351650
8Gilbert DionneX100.005846757174676872617273606631358349640
9Jim ThomsonX100.007163586576696967616665656066734650640
10Trent KlattX100.005947746974646670627070706534398948630
11Sergei Zholtok (R)X100.005241797472646668667065636229299542620
12Darby Hendrickson (R)X100.005746797070677065596558725630339742610
13Peter PopovicX99.007052766985717266596454805149486751660
14Normand Rochefort (C)X100.006649705277817953505736833580881551660
15Keith Carney (R)X100.007356666775747563566654795040458139650
16Dave KarpaX100.007468486676646662587052774632328946630
17Jamie Pushor (R)X100.007765556679656663596443744136379645620
18Mattias Norstrom (R)X100.006849786676697062607035753335399542620
Rayé
1David ArchibaldX100.006446856976767869637166796449497445670
2Sergio MomessoX100.008679446776697270677369696848664742660
3Brent AshtonX71.756248696276767466636672687174901038660
4Pat ConacherX100.00705564597066656862666675646978441650
5Marc BureauX100.007369466576717464606662735951505242630
6Andrew McBainX100.007159626775707358546067576658624732610
7Mark HardyX100.00695473567269715755604181408697241660
8Shawn CroninX100.008569536276697046445644804065753341650
MOYENNE D'ÉQUIPE98.68695766667571726560676073575054574565
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Steve Shields (R)100.00637080817571808378727032399546690
2Steve Weeks100.0077737270735572766774697982143690
Rayé
1John Tanner100.00736875757373798579706737378936690
MOYENNE D'ÉQUIPE100.0071707675746677817572694953624269
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Pierre Page68747679817975CAN46295,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Bill LindsayIsotopes (COL)RW1851318035562325716538.77%337320.7205520831233541138.30%4700100.9700001003
2Hubie McDonoughIsotopes (COL)C17881600032745123317.78%026615.654261057000020052.35%34000001.2000000002
3Ted DonatoIsotopes (COL)LW94610-5003173392712.12%219021.1223520450000300038.46%1300001.0500000020
4Peter PopovicIsotopes (COL)D181910-71202920197135.26%3243724.311231290000082000.00%000000.4600000012
5Peter WhiteIsotopes (COL)C18459-22092836123211.11%126514.760111165011070145.71%35000000.6800000000
6Normand RochefortIsotopes (COL)D18459-81801814292713.79%2243624.263031985011181100.00%000000.4100000100
7Jim CumminsIsotopes (COL)RW16268130103818336296.06%225015.660005490001170061.11%1800000.6400002000
8David ArchibaldIsotopes (COL)RW10538-62022236112813.89%623923.9132514401012591045.98%8700000.6700000100
9Andy BrickleyIsotopes (COL)LW133474000112481712.50%018714.440226420000190050.00%2800000.7500000101
10Laurie BoschmanIsotopes (COL)C9257-21203233218239.52%321724.120335490001450059.76%33300000.6400000002
11Keith CarneyIsotopes (COL)D16246-116028201941410.53%2231919.941121361011053100.00%000000.3800000000
12Dave KarpaIsotopes (COL)D131564140281393711.11%825219.39000653011033000.00%000000.4800000000
13Brent AshtonIsotopes (COL)LW113251205102572112.00%122320.350116530001391054.69%6400000.4500000100
14Sergio MomessoIsotopes (COL)LW8134-2100211016486.25%213216.510224201012170052.50%4000000.6100000010
15Lyle OdeleinRockiesD5224-221511674328.57%811523.05101318000023100.00%000000.6900001000
16Jamie PushorIsotopes (COL)D12112-280301131333.33%1217914.9200002000015000.00%000000.2200000010
17Pat ConacherIsotopes (COL)LW7022-140766030.00%29113.070001110000200030.00%1000000.4400000000
18Marty McInnisRockiesLW11121200540125.00%01919.4000003000130075.00%800002.0600000000
19Marc BureauIsotopes (COL)C10112060111511269.09%112412.41000000000130046.21%13200000.3200000000
20Mark HardyIsotopes (COL)D70110601274310.00%1016123.04011329000134000.00%000000.1200000000
21Gilbert DionneIsotopes (COL)LW16011-520010186130.00%01298.0900012000010035.71%1400000.1500000000
22Mattias NorstromIsotopes (COL)D11011-440791010.00%1116214.8000001000014000.00%000000.1200000000
23Jay WellsRockiesD1011-100503200.00%12626.600113700003000.00%000000.7500000000
24Trent KlattIsotopes (COL)RW15101-50077113109.09%0825.4900001000000040.00%500000.2400000001
25Darby HendricksonIsotopes (COL)C11000-56041110260.00%0817.4300000000060050.00%8800000.0000000000
26Sergei ZholtokIsotopes (COL)LW11000-520447120.00%0827.4800000000070062.50%800000.0000000000
27Shawn CroninIsotopes (COL)D7000-11801511140.00%610314.840000300009000.00%000000.0000000000
28Jim ThomsonIsotopes (COL)RW16000-4404981100.00%11257.8600001000140036.36%1100000.0000000000
Stats d'équipe Total ou en Moyenne3245189140-572362039537649613537510.28%156527516.28152641162882369147036250.81%159600100.53000044511
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Steve ShieldsIsotopes (COL)155630.8893.4084740484310100.0000144200
2Steve WeeksIsotopes (COL)21100.9062.52119005530010.000028000
3John TannerIsotopes (COL)30200.8863.69130008700000.000026010
Stats d'équipe Total ou en Moyenne206930.8903.34109740615540110.00001818210


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Andrew McBainIsotopes (COL)RW281992-02-09 9:08:37 PMNo194 Lbs6 ft1NoNoNo2Pro & Farm450,000$45,000$35,074$No450,000$
Andy BrickleyIsotopes (COL)LW321988-02-09 9:08:37 PMNo200 Lbs5 ft11NoNoNo2Pro & Farm450,000$45,000$35,074$No450,000$
Bill LindsayIsotopes (COL)RW231997-02-09 9:08:37 PMNo190 Lbs6 ft0NoNoNo2Pro & Farm260,000$26,000$20,265$No260,000$
Brent Ashton (Sur la Masse Salariale)Isotopes (COL)LW331987-02-09 9:08:37 PMNo210 Lbs6 ft1NoNoNo2Pro & Farm500,000$50,000$38,971$No500,000$
Darby HendricksonIsotopes (COL)C211999-02-09 9:08:37 PMYes195 Lbs6 ft0NoNoNo3Pro & Farm350,000$35,000$27,279$No350,000$350,000$
Dave KarpaIsotopes (COL)D221998-02-09 9:08:37 PMNo210 Lbs6 ft1NoNoNo2Pro & Farm250,000$25,000$19,485$No250,000$
David ArchibaldIsotopes (COL)RW241996-02-09 9:08:37 PMNo202 Lbs6 ft1NoNoNo1Pro & Farm505,000$50,500$39,360$No
Gilbert DionneIsotopes (COL)LW231997-02-09 9:08:37 PMNo194 Lbs6 ft0NoNoNo3Pro & Farm440,000$44,000$34,294$No440,000$440,000$
Hubie McDonoughIsotopes (COL)C301990-02-09 9:08:37 PMNo180 Lbs5 ft9NoNoNo3Pro & Farm450,000$45,000$35,074$No450,000$450,000$
Jamie PushorIsotopes (COL)D211999-02-09 9:08:37 PMYes215 Lbs6 ft3NoNoNo2Pro & Farm400,000$40,000$31,176$No400,000$
Jim CumminsIsotopes (COL)RW241996-02-09 9:08:37 PMNo219 Lbs6 ft2NoNoNo2Pro & Farm250,000$25,000$19,485$No250,000$
Jim ThomsonIsotopes (COL)RW281992-02-09 9:08:37 PMNo205 Lbs6 ft1NoNoNo2Pro & Farm400,000$40,000$31,176$No400,000$
John TannerIsotopes (COL)G221998-02-09 9:08:37 PMNo182 Lbs6 ft3NoNoNo3Pro & Farm525,000$52,500$40,919$No525,000$525,000$
Keith CarneyIsotopes (COL)D231997-02-09 9:08:37 PMYes205 Lbs6 ft2NoNoNo1Pro & Farm525,000$52,500$40,919$No
Laurie BoschmanIsotopes (COL)C331987-02-09 9:08:37 PMNo185 Lbs6 ft0NoNoNo2Pro & Farm650,000$65,000$50,662$No650,000$
Marc BureauIsotopes (COL)C271993-02-09 9:08:37 PMNo202 Lbs6 ft1NoNoNo1Pro & Farm350,000$35,000$27,279$No
Mark HardyIsotopes (COL)D341986-02-09 9:08:37 PMNo195 Lbs5 ft11NoNoNo3Pro & Farm800,000$80,000$62,353$No800,000$800,000$
Mattias NorstromIsotopes (COL)D211999-02-09 9:08:37 PMYes205 Lbs6 ft1NoNoNo3Pro & Farm500,000$50,000$38,971$No500,000$500,000$
Normand RochefortIsotopes (COL)D321988-02-09 9:08:37 PMNo214 Lbs6 ft1NoNoNo1Pro & Farm180,000$18,000$14,029$No
Pat ConacherIsotopes (COL)LW341986-02-09 9:08:37 PMNo188 Lbs5 ft8NoNoNo3Pro & Farm550,000$55,000$42,868$No550,000$550,000$
Peter PopovicIsotopes (COL)D251995-02-09 9:08:37 PMNo240 Lbs6 ft6NoNoNo3Pro & Farm740,000$74,000$57,676$No740,000$740,000$
Peter WhiteIsotopes (COL)C241996-02-09 9:08:37 PMNo195 Lbs5 ft11NoNoNo2Pro & Farm210,000$21,000$16,368$No210,000$
Sergei ZholtokIsotopes (COL)LW211999-02-09 9:08:37 PMYes185 Lbs6 ft0NoNoNo3Pro & Farm410,000$41,000$31,956$No410,000$410,000$
Sergio MomessoIsotopes (COL)LW281992-02-09 9:08:37 PMNo200 Lbs6 ft3NoNoNo2Pro & Farm625,800$62,580$48,776$No625,800$
Shawn CroninIsotopes (COL)D301990-02-09 9:08:37 PMNo210 Lbs6 ft2NoNoNo1Pro & Farm380,000$38,000$29,618$No
Steve ShieldsIsotopes (COL)G211999-02-09 9:08:37 PMYes215 Lbs6 ft3NoNoNo3Pro & Farm350,000$35,000$27,279$No350,000$350,000$
Steve WeeksIsotopes (COL)G351985-02-09 9:08:37 PMNo165 Lbs5 ft11NoNoNo2Pro & Farm550,000$55,000$42,868$No550,000$
Ted DonatoIsotopes (COL)LW241996-02-09 9:08:37 PMNo185 Lbs5 ft10NoNoNo2Pro & Farm500,000$50,000$38,971$No500,000$
Trent KlattIsotopes (COL)RW221998-02-09 9:08:37 PMNo205 Lbs6 ft1NoNoNo1Pro & Farm350,000$35,000$27,279$No
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2926.38200 Lbs6 ft12.14444,855$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Ted DonatoLaurie BoschmanBill Lindsay35122
2Andy BrickleyHubie McDonoughJim Cummins30122
3Gilbert DionnePeter WhiteJim Thomson20122
4Sergei ZholtokDarby HendricksonTrent Klatt15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Normand RochefortPeter Popovic35122
2Keith CarneyDave Karpa30122
3Mattias NorstromJamie Pushor20122
4Normand RochefortPeter Popovic15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Ted DonatoLaurie BoschmanBill Lindsay60122
2Andy BrickleyHubie McDonoughJim Cummins40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Normand RochefortPeter Popovic60122
2Keith CarneyDave Karpa40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Laurie BoschmanTed Donato60122
2Bill LindsayAndy Brickley40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Normand RochefortPeter Popovic60122
2Keith CarneyDave Karpa40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Laurie Boschman60122Normand RochefortPeter Popovic60122
2Ted Donato40122Keith CarneyDave Karpa40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Laurie BoschmanTed Donato60122
2Bill LindsayAndy Brickley40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Normand RochefortPeter Popovic60122
2Keith CarneyDave Karpa40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Ted DonatoLaurie BoschmanBill LindsayNormand RochefortPeter Popovic
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Ted DonatoLaurie BoschmanBill LindsayNormand RochefortPeter Popovic
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Peter White, Gilbert Dionne, Jim ThomsonPeter White, Gilbert DionneJim Thomson
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Mattias Norstrom, Jamie Pushor, Keith CarneyMattias NorstromJamie Pushor, Keith Carney
Tirs de Pénalité
Laurie Boschman, Ted Donato, Bill Lindsay, Andy Brickley, Hubie McDonough
Gardien
#1 : Steve Shields, #2 : Steve Weeks


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Banshees411101001012-21000010012-131110000910-140.50010182800152115081144172176411240628218316.67%26292.31%033164051.72%31665648.17%16430054.67%423282437142238115
2Canadiens10010000220100100002200000000000010.50022400152115037144172176439101923400.00%7185.71%033164051.72%31665648.17%16430054.67%423282437142238115
3Citadelles413000001117-62110000076120200000411-720.2501120311015211509714417217641463965981516.67%28485.71%133164051.72%31665648.17%16430054.67%423282437142238115
4Riverman623100002026-6311100001212031200000814-650.4172034540015211501841441721764192526813037821.62%33778.79%233164051.72%31665648.17%16430054.67%423282437142238115
5Spoonman's32100000853211000004221100000043140.667815230015211509714417217646615266230310.00%12191.67%033164051.72%31665648.17%16430054.67%423282437142238115
Total1868301005162-119332010026242935100002538-13160.444518914010152115049614417217645551562403951041514.42%1061585.85%333164051.72%31665648.17%16430054.67%423282437142238115
_Since Last GM Reset1898001005162-119332010026242965-200002538-13190.528518914010152115049614417217645551562403951041514.42%1061585.85%333164051.72%31665648.17%16430054.67%423282437142238115
_Vs Conference1265001003136-56221010014122643-100001724-7130.542315586101521150312144172176436310417226567710.45%73889.04%133164051.72%31665648.17%16430054.67%423282437142238115
_Vs Division834001002129-831100100880523000001321-870.43821385910152115017814417217642587912718033412.12%54688.89%133164051.72%31665648.17%16430054.67%423282437142238115

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
1816W1518914049655515624039510
Tous les Matchs
GPWLOTWOTL TGFGA
18680135162
Matchs locaux
GPWLOTWOTL TGFGA
9330122624
Matchs Éxtérieurs
GPWLOTWOTL TGFGA
9350012538
Derniers 10 Matchs
WLOTWOTL T
44002
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1041514.42%1061585.85%3
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
14417217641521150
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
33164051.72%31665648.17%16430054.67%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
423282437142238115


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2020-09-228Banshees2Isotopes1LXSommaire du Match
3 - 2020-09-2314Isotopes3Banshees2WSommaire du Match
4 - 2020-09-2421Riverman1Isotopes4WSommaire du Match
5 - 2020-09-2522Isotopes2Banshees4LSommaire du Match
6 - 2020-09-2627Isotopes2Riverman6LSommaire du Match
8 - 2020-09-2837Isotopes2Riverman6LSommaire du Match
9 - 2020-09-2942Canadiens2Isotopes2TXSommaire du Match
10 - 2020-09-3050Isotopes2Citadelles4LSommaire du Match
12 - 2020-10-0259Citadelles4Isotopes3LSommaire du Match
14 - 2020-10-0467Spoonman's1Isotopes0LSommaire du Match
16 - 2020-10-0674Isotopes4Spoonman's3WSommaire du Match
18 - 2020-10-0880Isotopes4Riverman2WSommaire du Match
20 - 2020-10-1087Citadelles2Isotopes4WSommaire du Match
22 - 2020-10-1295Riverman4Isotopes4TXSommaire du Match
24 - 2020-10-14101Isotopes2Citadelles7LSommaire du Match
26 - 2020-10-16107Isotopes4Banshees4TXSommaire du Match
28 - 2020-10-18115Riverman7Isotopes4LSommaire du Match
30 - 2020-10-20123Spoonman's1Isotopes4WSommaire du Match
32 - 2020-10-22129Isotopes-Citadelles-
34 - 2020-10-24137Citadelles-Isotopes-
36 - 2020-10-26144Riverman-Isotopes-
38 - 2020-10-28151Isotopes-Spoonman's-
40 - 2020-10-30157Isotopes-Citadelles-
42 - 2020-11-01164Banshees-Isotopes-
43 - 2020-11-02172Isotopes-Riverman-
45 - 2020-11-04178Citadelles-Isotopes-
47 - 2020-11-06186Croque-Morts-Isotopes-
48 - 2020-11-07194Isotopes-Wolves-
49 - 2020-11-08200Isotopes-Spoonman's-
51 - 2020-11-10206Isotopes-Riverman-
52 - 2020-11-11210Pacifiques de la route-Isotopes-
55 - 2020-11-14221As-Isotopes-
56 - 2020-11-15230Banshees-Isotopes-
58 - 2020-11-17235Isotopes-Banshees-
59 - 2020-11-18243Harvard-Isotopes-
61 - 2020-11-20251Isotopes-Ailes Rouges-
62 - 2020-11-21257Wolves-Isotopes-
64 - 2020-11-23262Isotopes-Snipers-
65 - 2020-11-24268Isotopes-Canadiens-
66 - 2020-11-25276Pacifiques de la route-Isotopes-
67 - 2020-11-26282Isotopes-Chiefs-
70 - 2020-11-29290Snipers-Isotopes-
71 - 2020-11-30298Isotopes-Banshees-
72 - 2020-12-01304Ailes Rouges-Isotopes-
74 - 2020-12-03314Isotopes-Canadiens-
75 - 2020-12-04318Banshees-Isotopes-
76 - 2020-12-05325Isotopes-Harvard-
78 - 2020-12-07332Ailes Rouges-Isotopes-
79 - 2020-12-08343Isotopes-Chiefs-
80 - 2020-12-09346Canadiens-Isotopes-
82 - 2020-12-11352Isotopes-Harvard-
84 - 2020-12-13360Chiefs-Isotopes-
86 - 2020-12-15371As-Isotopes-
88 - 2020-12-17375Isotopes-Harvard-
90 - 2020-12-19383Canadiens-Isotopes-
92 - 2020-12-21393Pacifiques de la route-Isotopes-
94 - 2020-12-23400Isotopes-As-
96 - 2020-12-25406Isotopes-Ailes Rouges-
98 - 2020-12-27412Banshees-Isotopes-
101 - 2020-12-30423Wolves-Isotopes-
103 - 2021-01-01429Isotopes-Pacifiques de la route-
104 - 2021-01-02437Chiefs-Isotopes-
105 - 2021-01-03442Isotopes-As-
108 - 2021-01-06451Snipers-Isotopes-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
109 - 2021-01-07456Isotopes-Wolves-
110 - 2021-01-08457Isotopes-Croque-Morts-
112 - 2021-01-10466Isotopes-Croque-Morts-
114 - 2021-01-12476Wolves-Isotopes-
115 - 2021-01-13483Ailes Rouges-Isotopes-
117 - 2021-01-15494Croque-Morts-Isotopes-
118 - 2021-01-16500Isotopes-As-
120 - 2021-01-18508Ailes Rouges-Isotopes-
122 - 2021-01-20521Harvard-Isotopes-
123 - 2021-01-21526Isotopes-Pacifiques de la route-
124 - 2021-01-22533Chiefs-Isotopes-
127 - 2021-01-25546Isotopes-Croque-Morts-
128 - 2021-01-26548Chiefs-Isotopes-
129 - 2021-01-27553Isotopes-Banshees-
130 - 2021-01-28557Isotopes-Croque-Morts-
131 - 2021-01-29559Isotopes-Snipers-
134 - 2021-02-01567Canadiens-Isotopes-
135 - 2021-02-02574Isotopes-Snipers-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
32 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
286,119$ 1,240,080$ 1,240,080$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
1,240,080$ 286,119$ 28 1

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 106 9,817$ 1,040,602$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
19931868301005162-119332010026242935100002538-1316518914010152115049614417217645551562403951041514.42%1061585.85%333164051.72%31665648.17%16430054.67%423282437142238115
Total Saison Régulière1868301005162-119332010026242935100002538-1316518914010152115049614417217645551562403951041514.42%1061585.85%333164051.72%31665648.17%16430054.67%423282437142238115