Isotopes

GP: 51 | W: 20 | L: 22 | T: 7 | P: 49
GF: 151 | GA: 172 | PP%: 16.29% | PK%: 82.94%
DG: Simon Picard | Morale : 44 | Moyenne d'Équipe : 65
Prochain matchs #360 vs Chiefs
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Brent AshtonX100.006248696276767466636672687174901041660332500,000$
2Bill LindsayX100.007870567274797874646964795832338158660232260,000$
3Jim CumminsX100.008879456479757669647563755628347554650242250,000$
4Peter WhiteX100.006751706972697070626970746636367658650242210,000$
5Andy Brickley (A)X100.006045806472766863636566716680761647650322450,000$
6Hubie McDonoughX100.006446776769697071657570666456533357650303450,000$
7Gilbert DionneX100.005846757174676872617273606631358338640233440,000$
8Jim ThomsonX100.007163586576696967616665656066734625640282400,000$
9Marc BureauX100.007369466576717464606662735951505237630271350,000$
10Trent KlattX100.005947746974646670627070706534398947630221350,000$
11Sergei Zholtok (R)X100.005241797472646668667065636229299534620213410,000$
12Darby Hendrickson (R)X100.005746797070677065596558725630339741610213350,000$
13Mark HardyX100.00695473567269715755604181408697236660343800,000$
14Peter PopovicX100.007052766985717266596454805149486757660253740,000$
15Normand Rochefort (C)X100.006649705277817953505736833580881547660321180,000$
16Keith Carney (R)X100.007356666775747563566654795040458145650231525,000$
17Dave KarpaX100.007468486676646662587052774632328940630222250,000$
18Mattias Norstrom (R)X100.006849786676697062607035753335399541620213500,000$
Rayé
1David ArchibaldX100.006446856976767869637166796449497441670241505,000$
2Sergio MomessoX100.008679446776697270677369696848664725660282625,800$
3Pat ConacherX100.00705564597066656862666675646978429650343550,000$
4Andrew McBainX100.007159626775707358546067576658624720610282450,000$
5Jay WellsX100.00756943577472716256613778368995120670342650,000$
6Shawn CroninX100.008569536276697046445644804065753319650301380,000$
7Jamie Pushor (R)X100.007765556679656663596443744136379623620212400,000$
MOYENNE D'ÉQUIPE100.00695765657570716560675873555156563964
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Steve Shields (R)100.00637080817571808378727032399533690
2John Tanner100.00736875757373798579706737378931690
Rayé
1Steve Weeks100.0077737270735572766774697982128690
MOYENNE D'ÉQUIPE100.0071707675746677817572694953623169
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Pierre Page68747679817975CAN46295,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Hubie McDonoughIsotopes (COL)C5017264302010102105268416.19%377615.52881626165000023049.90%99200001.1100000124
2Bill LindsayIsotopes (COL)RW51122941-177515095164471237.32%8102720.15313165121112381512346.38%13800100.8000001123
3Peter PopovicIsotopes (COL)D5182735-5420786468273411.76%72121423.816814372210002222010.00%000000.5800000115
4Peter WhiteIsotopes (COL)C5115163132355885129408411.63%477315.16369341660110211347.45%95900000.8000001123
5David ArchibaldIsotopes (COL)RW34131528-140178697226913.40%1079823.484593213220251921043.95%33900000.7000000300
6Jim CumminsIsotopes (COL)RW4991726-78115131429221569.78%469714.2323516870001312047.17%5300000.7500012120
7Keith CarneyIsotopes (COL)D4991625-5580904654193016.67%5495019.416612311400110134200.00%000000.5300000100
8Normand RochefortIsotopes (COL)D5181523-2360654264113212.50%56121023.74415382140111228100.00%000000.3800000110
9Sergio MomessoIsotopes (COL)LW23712191280642649162714.29%440317.5607710591012580251.22%8200000.9400000121
10Andy BrickleyIsotopes (COL)LW4161117104042040133015.00%548111.760337850001400049.09%5500000.7100000102
11Ted DonatoRockiesLW2371017-12405297820478.97%542518.5026828890001661051.52%3300000.8000000021
12Laurie BoschmanRockiesC2031215-437566704614426.52%446523.2704413950113970060.58%68500000.6400001002
13Brent AshtonIsotopes (COL)LW357714-1520164163154911.11%567619.321561612100011161055.88%17000000.4100000300
14Dave KarpaIsotopes (COL)D37291176208035216129.52%3565117.62000784011076000.00%000000.3400000010
15Gilbert DionneIsotopes (COL)LW35371022022130111810.00%02667.62000160000140043.90%4100000.7500000101
16Marty McInnisRockiesLW1255107409303031616.67%327222.670009510001611053.03%6600000.7400000100
17Marc BureauIsotopes (COL)C33459-320033453491711.76%539011.83000000000281144.90%41200000.4600000000
18Pat ConacherIsotopes (COL)LW28358-312015122841910.71%528610.221015310000461028.57%2100000.5600000010
19Sergei ZholtokIsotopes (COL)LW29235-640814238188.70%02217.6300000000180056.25%1600000.4500000001
20Mattias NorstromIsotopes (COL)D33145-6160192261616.67%3150015.1810115000045000.00%000000.2000000001
21Shawn CroninIsotopes (COL)D19145544051934533.33%1729515.53000018000037100.00%000000.3400000011
22Darby HendricksonIsotopes (COL)C33134-71001830257174.00%12658.06000000001210047.31%27900000.3000000000
23Mark HardyIsotopes (COL)D32134-12240562215686.67%4372422.63123101230001143100.00%000000.1100000000
24Lyle OdeleinRockiesD5224-221511674328.57%811523.05101318000023100.00%000000.6900001000
25Jim ThomsonIsotopes (COL)RW28213-2408161771911.76%12368.44000030001100048.00%2500000.2500000010
26Trent KlattIsotopes (COL)RW37213-7602320309276.67%02506.7700003000000133.33%1500000.2400000011
27Jamie PushorIsotopes (COL)D20112-3200501563616.67%1930315.1900016000028000.00%000000.1300000010
28Jay WellsIsotopes (COL)D9011-312034113220.00%921423.800111240000036000.00%000000.0900000000
Stats d'équipe Total ou en Moyenne918151267418-716593511711046133737590011.29%4111489616.23437812138821834711301946201149.90%438100100.5600016172026
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Steve ShieldsIsotopes (COL)32101740.8813.541796401068930120.00003115300
2John TannerIsotopes (COL)145320.8962.9469401343260000.00001023210
3Steve WeeksIsotopes (COL)105410.9082.7960300283030020.00001013200
Stats d'équipe Total ou en Moyenne56202470.8903.2630944116815220140.00005151710


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Andrew McBainIsotopes (COL)RW281992-02-09 9:08:37 PMNo194 Lbs6 ft1NoNoNo2Pro & Farm450,000$45,000$17,537$No450,000$
Andy BrickleyIsotopes (COL)LW321988-02-09 9:08:37 PMNo200 Lbs5 ft11NoNoNo2Pro & Farm450,000$45,000$17,537$No450,000$
Bill LindsayIsotopes (COL)RW231997-02-09 9:08:37 PMNo190 Lbs6 ft0NoNoNo2Pro & Farm260,000$26,000$10,132$No260,000$
Brent AshtonIsotopes (COL)LW331987-02-09 9:08:37 PMNo210 Lbs6 ft1NoNoNo2Pro & Farm500,000$50,000$19,485$No500,000$
Darby HendricksonIsotopes (COL)C211999-02-09 9:08:37 PMYes195 Lbs6 ft0NoNoNo3Pro & Farm350,000$35,000$13,640$No350,000$350,000$
Dave KarpaIsotopes (COL)D221998-02-09 9:08:37 PMNo210 Lbs6 ft1NoNoNo2Pro & Farm250,000$25,000$9,743$No250,000$
David ArchibaldIsotopes (COL)RW241996-02-09 9:08:37 PMNo202 Lbs6 ft1NoNoNo1Pro & Farm505,000$50,500$19,680$No
Gilbert DionneIsotopes (COL)LW231997-02-09 9:08:37 PMNo194 Lbs6 ft0NoNoNo3Pro & Farm440,000$44,000$17,147$No440,000$440,000$
Hubie McDonoughIsotopes (COL)C301990-02-09 9:08:37 PMNo180 Lbs5 ft9NoNoNo3Pro & Farm450,000$45,000$17,537$No450,000$450,000$
Jamie PushorIsotopes (COL)D211999-02-09 9:08:37 PMYes215 Lbs6 ft3NoNoNo2Pro & Farm400,000$40,000$15,588$No400,000$
Jay WellsIsotopes (COL)D341986-02-09 9:08:37 PMNo204 Lbs6 ft1NoNoNo2Pro & Farm650,000$65,000$25,331$No650,000$
Jim CumminsIsotopes (COL)RW241996-02-09 9:08:37 PMNo219 Lbs6 ft2NoNoNo2Pro & Farm250,000$25,000$9,743$No250,000$
Jim ThomsonIsotopes (COL)RW281992-02-09 9:08:37 PMNo205 Lbs6 ft1NoNoNo2Pro & Farm400,000$40,000$15,588$No400,000$
John TannerIsotopes (COL)G221998-02-09 9:08:37 PMNo182 Lbs6 ft3NoNoNo3Pro & Farm525,000$52,500$20,460$No525,000$525,000$
Keith CarneyIsotopes (COL)D231997-02-09 9:08:37 PMYes205 Lbs6 ft2NoNoNo1Pro & Farm525,000$52,500$20,460$No
Marc BureauIsotopes (COL)C271993-02-09 9:08:37 PMNo202 Lbs6 ft1NoNoNo1Pro & Farm350,000$35,000$13,640$No
Mark HardyIsotopes (COL)D341986-02-09 9:08:37 PMNo195 Lbs5 ft11NoNoNo3Pro & Farm800,000$80,000$31,176$No800,000$800,000$
Mattias NorstromIsotopes (COL)D211999-02-09 9:08:37 PMYes205 Lbs6 ft1NoNoNo3Pro & Farm500,000$50,000$19,485$No500,000$500,000$
Normand RochefortIsotopes (COL)D321988-02-09 9:08:37 PMNo214 Lbs6 ft1NoNoNo1Pro & Farm180,000$18,000$7,015$No
Pat ConacherIsotopes (COL)LW341986-02-09 9:08:37 PMNo188 Lbs5 ft8NoNoNo3Pro & Farm550,000$55,000$21,434$No550,000$550,000$
Peter PopovicIsotopes (COL)D251995-02-09 9:08:37 PMNo240 Lbs6 ft6NoNoNo3Pro & Farm740,000$74,000$28,838$No740,000$740,000$
Peter WhiteIsotopes (COL)C241996-02-09 9:08:37 PMNo195 Lbs5 ft11NoNoNo2Pro & Farm210,000$21,000$8,184$No210,000$
Sergei ZholtokIsotopes (COL)LW211999-02-09 9:08:37 PMYes185 Lbs6 ft0NoNoNo3Pro & Farm410,000$41,000$15,978$No410,000$410,000$
Sergio MomessoIsotopes (COL)LW281992-02-09 9:08:37 PMNo200 Lbs6 ft3NoNoNo2Pro & Farm625,800$62,580$24,388$No625,800$
Shawn CroninIsotopes (COL)D301990-02-09 9:08:37 PMNo210 Lbs6 ft2NoNoNo1Pro & Farm380,000$38,000$14,809$No
Steve ShieldsIsotopes (COL)G211999-02-09 9:08:37 PMYes215 Lbs6 ft3NoNoNo3Pro & Farm350,000$35,000$13,640$No350,000$350,000$
Steve WeeksIsotopes (COL)G351985-02-09 9:08:37 PMNo165 Lbs5 ft11NoNoNo2Pro & Farm550,000$55,000$21,434$No550,000$
Trent KlattIsotopes (COL)RW221998-02-09 9:08:37 PMNo205 Lbs6 ft1NoNoNo1Pro & Farm350,000$35,000$13,640$No
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2826.50201 Lbs6 ft12.14442,886$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Brent AshtonPeter WhiteBill Lindsay35122
2Andy BrickleyHubie McDonoughJim Cummins30122
3Gilbert DionneMarc BureauJim Thomson20122
4Sergei ZholtokDarby HendricksonTrent Klatt15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Peter PopovicMark Hardy35122
2Normand RochefortKeith Carney30122
3Dave KarpaMattias Norstrom20122
4Peter PopovicMark Hardy15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Brent AshtonPeter WhiteBill Lindsay60122
2Andy BrickleyHubie McDonoughJim Cummins40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Peter PopovicMark Hardy60122
2Normand RochefortKeith Carney40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Brent AshtonBill Lindsay60122
2Jim CumminsPeter White40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Peter PopovicMark Hardy60122
2Normand RochefortKeith Carney40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Brent Ashton60122Peter PopovicMark Hardy60122
2Bill Lindsay40122Normand RochefortKeith Carney40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Brent AshtonBill Lindsay60122
2Jim CumminsPeter White40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Peter PopovicMark Hardy60122
2Normand RochefortKeith Carney40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Brent AshtonPeter WhiteBill LindsayPeter PopovicMark Hardy
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Brent AshtonPeter WhiteBill LindsayPeter PopovicMark Hardy
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Gilbert Dionne, Jim Thomson, Marc BureauGilbert Dionne, Jim ThomsonMarc Bureau
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Dave Karpa, Mattias Norstrom, Normand RochefortDave KarpaMattias Norstrom, Normand Rochefort
Tirs de Pénalité
Brent Ashton, Bill Lindsay, Jim Cummins, Peter White, Hubie McDonough
Gardien
#1 : John Tanner, #2 : Steve Shields


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Ailes Rouges32010000743210100003121100000043150.8337121901515248069461431435108120457616318.75%20385.00%0840169049.70%900185148.62%44684053.10%11697701260409669326
2As1010000016-51010000016-50000000000000.000123005152480274614314351038583310110.00%4175.00%0840169049.70%900185148.62%44684053.10%11697701260409669326
3Banshees924201002429-5412001001113-2512200001316-370.389244266105152480192461431435102688214019737616.22%64690.63%0840169049.70%900185148.62%44684053.10%11697701260409669326
4Canadiens4211000013112210100008532110000056-150.6251321340051524801194614314351010238639821314.29%29389.66%0840169049.70%900185148.62%44684053.10%11697701260409669326
5Chiefs2001010067-1000000000002001010067-120.500610160051524804346143143510652112387228.57%6350.00%0840169049.70%900185148.62%44684053.10%11697701260409669326
6Citadelles8431000025250431000001611541210000914-590.56325467110515248020146143143510268731151863339.09%48687.50%1840169049.70%900185148.62%44684053.10%11697701260409669326
7Croque-Morts1010000024-21010000024-20000000000000.00024610515248021461431435102768283133.33%40100.00%0840169049.70%900185148.62%44684053.10%11697701260409669326
8Harvard3300000014951100000042222000000107361.00014284200515248065461431435108416367817423.53%16381.25%0840169049.70%900185148.62%44684053.10%11697701260409669326
9Pacifiques de la route2110000067-12110000067-10000000000020.5006111700515248062461431435104920264410220.00%13376.92%0840169049.70%900185148.62%44684053.10%11697701260409669326
10Riverman944100002937-8412100001418-4532000001519-490.5002950790051524802704614314351029680112201501122.00%501472.00%2840169049.70%900185148.62%44684053.10%11697701260409669326
11Snipers2020000047-31010000034-11010000013-200.000471100515248060461431435106510264212216.67%11281.82%0840169049.70%900185148.62%44684053.10%11697701260409669326
12Spoonman's523000001515021100000422312000001113-240.4001526410051524801584614314351012128481014249.52%22290.91%1840169049.70%900185148.62%44684053.10%11697701260409669326
Total51202270200151172-21251011301007681-5261011401007591-16490.480151267418415152480133746143143510152641166311712644316.29%2995182.94%4840169049.70%900185148.62%44684053.10%11697701260409669326
13Wolves20200000511-61010000048-41010000013-200.00058131051524805046143143510621224496116.67%12558.33%0840169049.70%900185148.62%44684053.10%11697701260409669326
_Since Last GM Reset51272200200151172-21251011301007681-5261711-301007591-16560.549151267418415152480133746143143510152641166311712644316.29%2995182.94%4840169049.70%900185148.62%44684053.10%11697701260409669326
_Vs Conference311811002009796113741010043331018117-101005463-9380.61397173270205152480778461431435109082584146981572214.01%1852387.57%2840169049.70%900185148.62%44684053.10%11697701260409669326
_Vs Division1797001004954-58430010027243954000002230-8190.55949881372051524803934614314351053615525538370912.86%1121289.29%1840169049.70%900185148.62%44684053.10%11697701260409669326

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
5149W215126741813371526411663117141
Tous les Matchs
GPWLOTWOTL TGFGA
512022027151172
Matchs locaux
GPWLOTWOTL TGFGA
2510110137681
Matchs Éxtérieurs
GPWLOTWOTL TGFGA
2610110147591
Derniers 10 Matchs
WLOTWOTL T
52012
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2644316.29%2995182.94%4
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
461431435105152480
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
840169049.70%900185148.62%44684053.10%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
11697701260409669326


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2020-09-228Banshees2Isotopes1LXSommaire du Match
3 - 2020-09-2314Isotopes3Banshees2WSommaire du Match
4 - 2020-09-2421Riverman1Isotopes4WSommaire du Match
5 - 2020-09-2522Isotopes2Banshees4LSommaire du Match
6 - 2020-09-2627Isotopes2Riverman6LSommaire du Match
8 - 2020-09-2837Isotopes2Riverman6LSommaire du Match
9 - 2020-09-2942Canadiens2Isotopes2TXSommaire du Match
10 - 2020-09-3050Isotopes2Citadelles4LSommaire du Match
12 - 2020-10-0259Citadelles4Isotopes3LSommaire du Match
14 - 2020-10-0467Spoonman's1Isotopes0LSommaire du Match
16 - 2020-10-0674Isotopes4Spoonman's3WSommaire du Match
18 - 2020-10-0880Isotopes4Riverman2WSommaire du Match
20 - 2020-10-1087Citadelles2Isotopes4WSommaire du Match
22 - 2020-10-1295Riverman4Isotopes4TXSommaire du Match
24 - 2020-10-14101Isotopes2Citadelles7LSommaire du Match
26 - 2020-10-16107Isotopes4Banshees4TXSommaire du Match
28 - 2020-10-18115Riverman7Isotopes4LSommaire du Match
30 - 2020-10-20123Spoonman's1Isotopes4WSommaire du Match
32 - 2020-10-22129Isotopes1Citadelles1TXSommaire du Match
34 - 2020-10-24137Citadelles1Isotopes3WSommaire du Match
36 - 2020-10-26144Riverman6Isotopes2LSommaire du Match
38 - 2020-10-28151Isotopes5Spoonman's6LSommaire du Match
40 - 2020-10-30157Isotopes4Citadelles2WSommaire du Match
42 - 2020-11-01164Banshees3Isotopes2LSommaire du Match
43 - 2020-11-02172Isotopes3Riverman2WSommaire du Match
45 - 2020-11-04178Citadelles4Isotopes6WSommaire du Match
47 - 2020-11-06186Croque-Morts4Isotopes2LSommaire du Match
48 - 2020-11-07194Isotopes1Wolves3LSommaire du Match
49 - 2020-11-08200Isotopes2Spoonman's4LSommaire du Match
51 - 2020-11-10206Isotopes4Riverman3WSommaire du Match
52 - 2020-11-11210Pacifiques de la route6Isotopes2LSommaire du Match
55 - 2020-11-14221As6Isotopes1LSommaire du Match
56 - 2020-11-15230Banshees3Isotopes5WSommaire du Match
58 - 2020-11-17235Isotopes2Banshees4LSommaire du Match
59 - 2020-11-18243Harvard2Isotopes4WSommaire du Match
61 - 2020-11-20251Isotopes4Ailes Rouges3WSommaire du Match
62 - 2020-11-21257Wolves8Isotopes4LSommaire du Match
64 - 2020-11-23262Isotopes1Snipers3LSommaire du Match
65 - 2020-11-24268Isotopes1Canadiens3LSommaire du Match
66 - 2020-11-25276Pacifiques de la route1Isotopes4WSommaire du Match
67 - 2020-11-26282Isotopes3Chiefs3TXSommaire du Match
70 - 2020-11-29290Snipers4Isotopes3LSommaire du Match
71 - 2020-11-30298Isotopes2Banshees2TXSommaire du Match
72 - 2020-12-01304Ailes Rouges1Isotopes1TXSommaire du Match
74 - 2020-12-03314Isotopes4Canadiens3WSommaire du Match
75 - 2020-12-04318Banshees5Isotopes3LSommaire du Match
76 - 2020-12-05325Isotopes5Harvard3WSommaire du Match
78 - 2020-12-07332Ailes Rouges0Isotopes2WSommaire du Match
79 - 2020-12-08343Isotopes3Chiefs4LXSommaire du Match
80 - 2020-12-09346Canadiens3Isotopes6WSommaire du Match
82 - 2020-12-11352Isotopes5Harvard4WSommaire du Match
84 - 2020-12-13360Chiefs-Isotopes-
86 - 2020-12-15371As-Isotopes-
88 - 2020-12-17375Isotopes-Harvard-
90 - 2020-12-19383Canadiens-Isotopes-
92 - 2020-12-21393Pacifiques de la route-Isotopes-
94 - 2020-12-23400Isotopes-As-
96 - 2020-12-25406Isotopes-Ailes Rouges-
98 - 2020-12-27412Banshees-Isotopes-
101 - 2020-12-30423Wolves-Isotopes-
103 - 2021-01-01429Isotopes-Pacifiques de la route-
104 - 2021-01-02437Chiefs-Isotopes-
105 - 2021-01-03442Isotopes-As-
108 - 2021-01-06451Snipers-Isotopes-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
109 - 2021-01-07456Isotopes-Wolves-
110 - 2021-01-08457Isotopes-Croque-Morts-
112 - 2021-01-10466Isotopes-Croque-Morts-
114 - 2021-01-12476Wolves-Isotopes-
115 - 2021-01-13483Ailes Rouges-Isotopes-
117 - 2021-01-15494Croque-Morts-Isotopes-
118 - 2021-01-16500Isotopes-As-
120 - 2021-01-18508Ailes Rouges-Isotopes-
122 - 2021-01-20521Harvard-Isotopes-
123 - 2021-01-21526Isotopes-Pacifiques de la route-
124 - 2021-01-22533Chiefs-Isotopes-
127 - 2021-01-25546Isotopes-Croque-Morts-
128 - 2021-01-26548Chiefs-Isotopes-
129 - 2021-01-27553Isotopes-Banshees-
130 - 2021-01-28557Isotopes-Croque-Morts-
131 - 2021-01-29559Isotopes-Snipers-
134 - 2021-02-01567Canadiens-Isotopes-
135 - 2021-02-02574Isotopes-Snipers-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
16 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
830,133$ 1,240,080$ 1,240,080$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
1,240,080$ 830,133$ 28 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 53 9,817$ 520,301$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT