Spoonman's

GP: 51 | W: 27 | L: 19 | T: 5 | P: 59
GF: 157 | GA: 142 | PP%: 20.30% | PK%: 83.02%
DG: Louis-Philippe Fraser | Morale : 62 | Moyenne d'Équipe : 65
Prochain matchs #374 vs Chiefs
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Joel OttoX100.007663596179787968667264896362571776680322720,000$
2Dave SnuggerudX99.006448816772737475657774716649535475680272850,000$
3Mike DonnellyX100.006748736468777874677572706854553346670303680,000$
4Dave ReidX100.006244856276697272587271866245544067670291425,000$
5Bob SweeneyX100.008072536375737467627170786657604073670292620,000$
6Petri SkrikoX100.006447817368747566627075627165722433670312885,000$
7Mike EaglesX100.007055666571707267626760835849533375650301485,000$
8Dave BarrX99.005543805771707163616965776681811075650332500,000$
9Jamie BakerX100.006245756573727269647361805845505475650274700,000$
10Derek LaxdalX100.008272546476707061566370756851515473640271520,000$
11Glen Murray (R)X100.006452656476616270617071696634359650630212185,000$
12Todd Marchant (R)X100.007863736173777463646864716436468063630213100,000$
13Luke RichardsonX100.008778496979767761586654875143407549680241650,000$
14Dan KeczmerX100.007053697072747473627565785551596862680252285,000$
15Ric NattressX100.006847796476787758556144844354652575670312405,000$
16Cam RussellX100.008066526976666664596652785034347555640244550,000$
17Rich PilonX100.008778506276687053546551834932396876640251285,000$
18Kevin HallerX100.007662616876717363566244764234348270630233400,000$
Rayé
1Mike McPheeX100.006245816176767568677167696666651043660331640,000$
2Scott Pellerin (R)X100.006652697173697070657363755844478151650232350,000$
3Joe Sacco (R)X100.006452677371646665616964726234347520630243250,000$
4Scott ThorntonX100.006760626476666965617165696129328220620232225,000$
5Kirk Maltby (R)X100.005746786974646664626760745733299520610213395,000$
6Turner Stevenson (R)X100.007160566480686859576661695828289620600213240,000$
7Rob PearsonX100.006861627072666857546061696227279020590222200,000$
8Chris Tamer (R)X100.006661606578687255566350774832328220620233375,000$
9Sean O'DonnellX100.007364536281626465576346714232329020610223350,000$
MOYENNE D'ÉQUIPE99.93705766657570716560686276594447605265
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Danny Lorenz100.00687581787872807676747047557660710
2Rick Tabaracci (R)98.00697876747574817878747328277565680
Rayé
1Peter Sidorkiewicz100.00757070697172708777727338406119670
MOYENNE D'ÉQUIPE99.3371747674757377807773723841714869
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Bob Johnson71797472948755USA63295,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dave SnuggerudSpoonman's (HAR)RW512535601812012941724213114.53%2101819.98101020422220001385451.15%17400001.1800000924
2Joel OttoSpoonman's (HAR)C51192847144351101611464212113.01%21107521.09816244222210162902153.41%154100110.8700001264
3Dan KeczmerSpoonman's (HAR)D5173542-4315489410439666.73%63125024.5351621702180222250310.00%000000.6700010323
4Bob SweeneySpoonman's (HAR)C51201434138010185111155268712.90%796418.92279481941011604353.32%120600010.7000011433
5Ric NattressSpoonman's (HAR)D5112183017180235758214020.69%74120723.678412392040001244210.00%000000.5000000123
6Cam RussellSpoonman's (HAR)D51423271895122495513227.27%5997619.14426361510111159100.00%000000.5500000121
7Dave ReidSpoonman's (HAR)LW44111627720553105378610.48%867615.36325191080002641052.17%4600000.8000000111
8Todd MarchantSpoonman's (HAR)LW4510152511400675510322469.71%483818.633710292020001211148.81%8400110.6000000122
9Kevin HallerSpoonman's (HAR)D5031619-135553443811267.89%3286317.27257281310000102000.00%000000.4400010011
10Jamie BakerSpoonman's (HAR)C5110717-7340279888224711.36%964112.58000061013941249.51%70900000.5300000011
11Mike DonnellySpoonman's (HAR)LW258816640172260123413.33%135914.3832518510000252030.00%2000000.8900000011
12Luke RichardsonSpoonman's (HAR)D4531215-110315121503910277.69%5387119.3724619820002190100.00%000000.3400210200
13Dave BarrSpoonman's (HAR)RW51781534052645132415.56%34208.2433615720000773051.72%2900000.7100000031
14Rich PilonSpoonman's (HAR)D512121416975141423112326.45%4186416.960221681011069000.00%000000.3200001000
15Derek LaxdalSpoonman's (HAR)RW506814-3880127427317388.22%579515.910113400031230053.70%5400000.3500000110
16Glen MurraySpoonman's (HAR)RW3911112-818025112712193.70%23749.61167994000000130.43%2300000.6400000001
17Mike McPheeSpoonman's (HAR)LW382810-716012294910324.08%242711.25033323000010060.71%5600000.4700000000
18Petri SkrikoSpoonman's (HAR)LW19459320762031520.00%11829.60044963000070053.85%1300100.9900000000
19Mike KeaneWhalersRW8156320711124108.33%215219.060445390000420046.15%1300000.7900000001
20Mike EaglesSpoonman's (HAR)C51145-62202466449252.27%63917.68000000111800049.73%37400000.2600000001
21Scott PellerinSpoonman's (HAR)LW37112-780920259234.00%32978.030000010111051035.71%1400000.1300000000
22Sean O'DonnellSpoonman's (HAR)D5000100720000.00%57915.8300001000024000.00%000000.0000000000
23Chris TamerSpoonman's (HAR)D1000000210000.00%01616.520000000006000.00%000000.0000000000
24Doug CrossmanWhalersD1000100303110.00%22222.770003400005000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne917157289446707485011591144145238795210.81%4051476916.1154981524532182459252086271452.02%435600330.6000243252728
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Danny LorenzSpoonman's (HAR)40181650.8902.9423476311510490400.00004011321
2Rick TabaracciSpoonman's (HAR)149300.9262.1373201263490010.00001135110
Stats d'équipe Total ou en Moyenne54271950.8992.7530796414113980410.00005146431


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Bob SweeneySpoonman's (HAR)C291991-02-09 9:08:37 PMNo200 Lbs6 ft3NoNoNo2Pro & Farm620,000$62,000$22,794$No620,000$
Cam RussellSpoonman's (HAR)D241996-02-09 9:08:37 PMNo200 Lbs6 ft4NoNoNo4Pro & Farm550,000$55,000$20,221$No550,000$550,000$550,000$
Chris TamerSpoonman's (HAR)D231997-02-09 9:08:37 PMYes215 Lbs6 ft1NoNoNo3Pro & Farm375,000$37,500$13,787$No375,000$375,000$
Dan KeczmerSpoonman's (HAR)D251995-02-09 9:08:37 PMNo180 Lbs6 ft1NoNoNo2Pro & Farm285,000$28,500$10,478$No285,000$
Danny LorenzSpoonman's (HAR)G241996-02-09 9:08:37 PMNo185 Lbs5 ft10NoNoNo3Pro & Farm746,000$74,600$27,426$No746,000$746,000$
Dave BarrSpoonman's (HAR)RW331987-02-09 9:08:37 PMNo195 Lbs6 ft1NoNoNo2Pro & Farm500,000$50,000$18,382$No500,000$
Dave ReidSpoonman's (HAR)LW291991-02-09 9:08:37 PMNo205 Lbs6 ft0NoNoNo1Pro & Farm425,000$42,500$15,625$No
Dave SnuggerudSpoonman's (HAR)RW271993-02-09 9:08:37 PMNo190 Lbs6 ft0NoNoNo2Pro & Farm850,000$85,000$31,250$No850,000$
Derek LaxdalSpoonman's (HAR)RW271993-02-09 9:08:37 PMNo210 Lbs6 ft1NoNoNo1Pro & Farm520,000$52,000$19,118$No
Glen MurraySpoonman's (HAR)RW211999-02-09 9:08:37 PMYes221 Lbs6 ft2NoNoNo2Pro & Farm185,000$18,500$6,801$No185,000$
Jamie BakerSpoonman's (HAR)C271993-02-09 9:08:37 PMNo190 Lbs6 ft1NoNoNo4Pro & Farm700,000$70,000$25,735$No700,000$700,000$700,000$
Joe SaccoSpoonman's (HAR)LW241996-02-09 9:08:37 PMYes180 Lbs6 ft1NoNoNo3Pro & Farm250,000$25,000$9,191$No250,000$250,000$
Joel OttoSpoonman's (HAR)C321988-02-09 9:08:37 PMNo220 Lbs6 ft4NoNoNo2Pro & Farm720,000$72,000$26,471$No720,000$
Kevin HallerSpoonman's (HAR)D231997-02-09 9:08:37 PMNo195 Lbs6 ft2NoNoNo3Pro & Farm400,000$40,000$14,706$No400,000$400,000$
Kirk MaltbySpoonman's (HAR)LW211999-02-09 9:08:37 PMYes200 Lbs6 ft0NoNoNo3Pro & Farm395,000$39,500$14,522$No395,000$395,000$
Luke RichardsonSpoonman's (HAR)D241996-02-09 9:08:37 PMNo210 Lbs6 ft4NoNoNo1Pro & Farm650,000$65,000$23,897$No
Mike DonnellySpoonman's (HAR)LW301990-02-09 9:08:37 PMNo170 Lbs5 ft11NoNoNo3Pro & Farm680,000$68,000$25,000$No680,000$680,000$
Mike EaglesSpoonman's (HAR)C301990-02-09 9:08:37 PMNo190 Lbs5 ft10NoNoNo1Pro & Farm485,000$48,500$17,831$No
Mike McPheeSpoonman's (HAR)LW331987-02-09 9:08:37 PMNo205 Lbs6 ft2NoNoNo1Pro & Farm640,000$64,000$23,529$No
Peter SidorkiewiczSpoonman's (HAR)G261994-02-09 9:08:37 PMNo165 Lbs5 ft9NoNoNo1Pro & Farm650,000$65,000$23,897$No
Petri SkrikoSpoonman's (HAR)LW311989-02-09 9:08:37 PMNo170 Lbs5 ft10NoNoNo2Pro & Farm885,000$88,500$32,537$No885,000$
Ric NattressSpoonman's (HAR)D311989-02-09 9:08:37 PMNo210 Lbs6 ft3NoNoNo2Pro & Farm405,000$40,500$14,890$No405,000$
Rich PilonSpoonman's (HAR)D251995-02-09 9:08:37 PMNo216 Lbs6 ft0NoNoNo1Pro & Farm285,000$28,500$10,478$No
Rick TabaracciSpoonman's (HAR)G241996-02-09 9:08:37 PMYes190 Lbs5 ft11NoNoNo1Pro & Farm475,000$47,500$17,463$No
Rob PearsonSpoonman's (HAR)RW221998-02-09 9:08:37 PMNo185 Lbs6 ft1NoNoNo2Pro & Farm200,000$20,000$7,353$No200,000$
Scott PellerinSpoonman's (HAR)LW231997-02-09 9:08:37 PMYes190 Lbs5 ft11NoNoNo2Pro & Farm350,000$35,000$12,868$No350,000$
Scott ThorntonSpoonman's (HAR)C231997-02-09 9:08:37 PMNo206 Lbs6 ft3NoNoNo2Pro & Farm225,000$22,500$8,272$No225,000$
Sean O'DonnellSpoonman's (HAR)D221998-02-09 9:08:37 PMNo230 Lbs6 ft3NoNoNo3Pro & Farm350,000$35,000$12,868$No350,000$350,000$
Todd MarchantSpoonman's (HAR)LW211999-08-11 9:10:52 AMYes175 Lbs5 ft10NoNoNo3Pro & Farm100,000$10,000$3,676$No250,000$250,000$
Turner StevensonSpoonman's (HAR)RW211999-02-09 9:08:37 PMYes226 Lbs6 ft3NoNoNo3Pro & Farm240,000$24,000$8,824$No240,000$240,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
3025.83197 Lbs6 ft12.17471,367$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Todd MarchantJoel OttoDave Snuggerud35023
2Mike DonnellyBob SweeneyDave Barr30122
3Dave ReidJamie BakerDerek Laxdal20122
4Petri SkrikoMike EaglesDave Snuggerud15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dan KeczmerLuke Richardson35122
2Ric NattressRich Pilon30122
3Cam RussellKevin Haller20122
4Dan KeczmerLuke Richardson15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Todd MarchantJoel OttoDave Snuggerud60122
2Petri SkrikoBob SweeneyDave Barr40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dan KeczmerLuke Richardson60122
2Ric NattressRich Pilon40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Joel OttoDave Barr60122
2Bob SweeneyDave Reid40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dan KeczmerLuke Richardson60122
2Ric NattressRich Pilon40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Dave Snuggerud60122Dan KeczmerLuke Richardson60122
2Mike Eagles40122Ric NattressRich Pilon40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Dave SnuggerudJoel Otto60122
2Bob SweeneyPetri Skriko40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dan KeczmerLuke Richardson60122
2Ric NattressRich Pilon40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Petri SkrikoJoel OttoDave SnuggerudDan KeczmerLuke Richardson
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Petri SkrikoJoel OttoDave SnuggerudDan KeczmerLuke Richardson
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Jamie Baker, Dave Reid, Mike DonnellyDerek Laxdal, Dave ReidTodd Marchant
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Cam Russell, Kevin Haller, Ric NattressCam RussellKevin Haller, Ric Nattress
Tirs de Pénalité
Dave Snuggerud, Joel Otto, Bob Sweeney, Petri Skriko, Mike Donnelly
Gardien
#1 : Rick Tabaracci, #2 : Danny Lorenz


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Ailes Rouges6420000024168220000001028422000001414080.6672444681149426421964364925199148536912735822.86%29486.21%1913176351.79%900177150.82%45582455.22%11887741221409677339
2As2200000011292200000011290000000000041.000112031004942642694364925199558305112433.33%9188.89%0913176351.79%900177150.82%45582455.22%11887741221409677339
3Banshees403100001116-51010000023-130210000913-410.125112031004942642121436492519913431528220525.00%25388.00%0913176351.79%900177150.82%45582455.22%11887741221409677339
4Canadiens631110002219342110000141402100100085390.75022416300494264217643649251991905217016943920.93%66986.36%0913176351.79%900177150.82%45582455.22%11887741221409677339
5Chiefs440000001275330000009631100000031281.000122335014942642107436492519911721469818422.22%22290.91%0913176351.79%900177150.82%45582455.22%11887741221409677339
6Citadelles622110001817130111000810-232100000107370.5831833510049426421734364925199156575714426623.08%24675.00%0913176351.79%900177150.82%45582455.22%11887741221409677339
7Croque-Morts2020000025-31010000002-21010000023-100.00024600494264244436492519943141639900.00%5260.00%0913176351.79%900177150.82%45582455.22%11887741221409677339
8Harvard33000000963220000005321100000043161.000915240149426428143649251997831467518316.67%22386.36%2913176351.79%900177150.82%45582455.22%11887741221409677339
9Isotopes532000001515032100000131122110000024-260.600152641014942642121436492519915839881152229.09%42490.48%1913176351.79%900177150.82%45582455.22%11887741221409677339
10Pacifiques de la route11000000211110000002110000000000021.0002460049426423743649251992051519600.00%4175.00%0913176351.79%900177150.82%45582455.22%11887741221409677339
11Riverman624000001622-621100000660413000001016-640.3331631470049426421484364925199154638611529620.69%381365.79%0913176351.79%900177150.82%45582455.22%11887741221409677339
12Snipers3120000010100110000005322020000057-220.3331019290049426428343649251997718556411436.36%20385.00%0913176351.79%900177150.82%45582455.22%11887741221409677339
Total5125195200015714215271673100089682124912210006874-6590.57815728944614494264214564364925199139940575411592665420.30%3185483.02%4913176351.79%900177150.82%45582455.22%11887741221409677339
13Wolves3012000056-12011000045-11001000011020.333591400494264210043649251996913246117317.65%12375.00%0913176351.79%900177150.82%45582455.22%11887741221409677339
_Since Last GM Reset51301902000157142152716731000896821241412-310006874-6640.62715728944614494264214564364925199139940575411592665420.30%3185483.02%4913176351.79%900177150.82%45582455.22%11887741221409677339
_Vs Conference281880200087807169421000514741294-2100036333400.7148715824503494264277943649251998332314596831472919.73%2012786.57%3913176351.79%900177150.82%45582455.22%11887741221409677339
_Vs Division13111010004332119711000028235440-110001596240.92343791220249426423644364925199385104262342791620.25%1101487.27%2913176351.79%900177150.82%45582455.22%11887741221409677339

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
5159W115728944614561399405754115914
Tous les Matchs
GPWLOTWOTL TGFGA
512519205157142
Matchs locaux
GPWLOTWOTL TGFGA
271671038968
Matchs Éxtérieurs
GPWLOTWOTL TGFGA
249121026874
Derniers 10 Matchs
WLOTWOTL T
82000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2665420.30%3185483.02%4
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
43649251994942642
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
913176351.79%900177150.82%45582455.22%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
11887741221409677339


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-09-211Canadiens6Spoonman's3LSommaire du Match
2 - 2020-09-2211Spoonman's3Canadiens2WXSommaire du Match
3 - 2020-09-2315Spoonman's3Chiefs1WSommaire du Match
5 - 2020-09-2524Harvard0Spoonman's1WR3Sommaire du Match
7 - 2020-09-2733Canadiens2Spoonman's3WSommaire du Match
9 - 2020-09-2940Spoonman's4Harvard3WR3Sommaire du Match
10 - 2020-09-3046Pacifiques de la route1Spoonman's2WSommaire du Match
11 - 2020-10-0156Chiefs0Spoonman's1WSommaire du Match
12 - 2020-10-0260Spoonman's2Riverman5LSommaire du Match
14 - 2020-10-0467Spoonman's1Isotopes0WSommaire du Match
16 - 2020-10-0674Isotopes4Spoonman's3LSommaire du Match
18 - 2020-10-0881Spoonman's5Citadelles3WSommaire du Match
20 - 2020-10-1088Spoonman's2Riverman5LSommaire du Match
22 - 2020-10-1294Citadelles1Spoonman's2WXSommaire du Match
24 - 2020-10-14102Riverman5Spoonman's4LSommaire du Match
26 - 2020-10-16109Spoonman's3Citadelles1WSommaire du Match
28 - 2020-10-18116Citadelles3Spoonman's3TXSommaire du Match
30 - 2020-10-20123Spoonman's1Isotopes4LSommaire du Match
32 - 2020-10-22130Riverman1Spoonman's2WSommaire du Match
34 - 2020-10-24136Spoonman's2Riverman3LSommaire du Match
36 - 2020-10-26143Spoonman's2Citadelles3LSommaire du Match
38 - 2020-10-28151Isotopes5Spoonman's6WSommaire du Match
40 - 2020-10-30158Spoonman's4Riverman3WSommaire du Match
42 - 2020-11-01165Croque-Morts2Spoonman's0LSommaire du Match
43 - 2020-11-02171Spoonman's6Ailes Rouges4WSommaire du Match
46 - 2020-11-05179Ailes Rouges2Spoonman's5WSommaire du Match
47 - 2020-11-06187Wolves3Spoonman's2LSommaire du Match
48 - 2020-11-07193Spoonman's2Croque-Morts3LSommaire du Match
49 - 2020-11-08200Isotopes2Spoonman's4WSommaire du Match
52 - 2020-11-11207Spoonman's3Ailes Rouges5LSommaire du Match
53 - 2020-11-12215Wolves2Spoonman's2TXSommaire du Match
55 - 2020-11-14223Spoonman's2Banshees5LSommaire du Match
56 - 2020-11-15227Spoonman's2Snipers3LSommaire du Match
57 - 2020-11-16234Citadelles6Spoonman's3LSommaire du Match
58 - 2020-11-17240Spoonman's5Canadiens3WSommaire du Match
61 - 2020-11-20248Canadiens2Spoonman's4WSommaire du Match
62 - 2020-11-21256Banshees3Spoonman's2LSommaire du Match
64 - 2020-11-23265Spoonman's3Banshees3TXSommaire du Match
65 - 2020-11-24269Spoonman's1Wolves1TXSommaire du Match
66 - 2020-11-25275Canadiens4Spoonman's4TXSommaire du Match
67 - 2020-11-26283Spoonman's4Banshees5LSommaire du Match
70 - 2020-11-29291Ailes Rouges0Spoonman's5WSommaire du Match
71 - 2020-11-30299Snipers3Spoonman's5WSommaire du Match
74 - 2020-12-03311Harvard3Spoonman's4WR3Sommaire du Match
75 - 2020-12-04321As1Spoonman's5WSommaire du Match
78 - 2020-12-07336Chiefs4Spoonman's5WSommaire du Match
79 - 2020-12-08338Spoonman's5Ailes Rouges2WSommaire du Match
80 - 2020-12-09349Spoonman's0Ailes Rouges3LSommaire du Match
82 - 2020-12-11353As1Spoonman's6WSommaire du Match
84 - 2020-12-13364Spoonman's3Snipers4LSommaire du Match
86 - 2020-12-15366Chiefs2Spoonman's3WSommaire du Match
88 - 2020-12-17374Spoonman's-Chiefs-
90 - 2020-12-19381Snipers-Spoonman's-
92 - 2020-12-21387Spoonman's-Canadiens-
94 - 2020-12-23395Harvard-Spoonman's-
96 - 2020-12-25402Spoonman's-Croque-Morts-
98 - 2020-12-27408Pacifiques de la route-Spoonman's-
100 - 2020-12-29420Croque-Morts-Spoonman's-
101 - 2020-12-30426Spoonman's-Chiefs-
103 - 2021-01-01432Spoonman's-As-
104 - 2021-01-02436Ailes Rouges-Spoonman's-
106 - 2021-01-04446Spoonman's-Harvard-
108 - 2021-01-06450As-Spoonman's-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
110 - 2021-01-08461Spoonman's-Harvard-
111 - 2021-01-09464Harvard-Spoonman's-
113 - 2021-01-11475Chiefs-Spoonman's-
115 - 2021-01-13482Spoonman's-Pacifiques de la route-
116 - 2021-01-14489Canadiens-Spoonman's-
118 - 2021-01-16497Spoonman's-Canadiens-
119 - 2021-01-17504Spoonman's-Harvard-
120 - 2021-01-18506Banshees-Spoonman's-
121 - 2021-01-19513Spoonman's-Chiefs-
122 - 2021-01-20519Pacifiques de la route-Spoonman's-
123 - 2021-01-21525Spoonman's-Chiefs-
124 - 2021-01-22530Spoonman's-Croque-Morts-
125 - 2021-01-23536Spoonman's-Canadiens-
126 - 2021-01-24539Wolves-Spoonman's-
127 - 2021-01-25547Spoonman's-Wolves-
129 - 2021-01-27552Snipers-Spoonman's-
132 - 2021-01-30562Pacifiques de la route-Spoonman's-
133 - 2021-01-31564Spoonman's-Pacifiques de la route-
134 - 2021-02-01569Spoonman's-As-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
14 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
951,842$ 1,414,100$ 1,424,100$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
1,414,100$ 951,842$ 30 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 50 11,096$ 554,800$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT