Monarchs

GP: 48 | W: 22 | L: 21 | OTL: 5 | P: 49
GF: 105 | GA: 104 | PP%: 15.44% | PK%: 91.09%
DG: Patrick Poulin | Morale : 50 | Moyenne d'Équipe : N/A
Prochain matchs #540 vs Moose
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Brett ConnollyXX100.007143888174679269356579522572747242002823,500,000$
2Daniel SprongXX100.00726783846773756650636268596161675000232750,000$
3Casey MittelstadtXX100.006342978374638970666364587957576750002121,491,666$
4Nicholas Merkley (R)XX100.007368857968676962786258635544446450002321,075,833$
5Jesperi KotkaniemiX100.007958818571638170735973532557576736001923,425,000$
6Joel Lowry (R)X100.00716879626869735750575162484747585000283700,000$
7Alexandre Texier (R)X100.00674290837163676442657060254747695000203925,000$
8Paul ByronXXX100.007943959058676161306666788568687150003111,166,667$
9Mikhail VorobyevX100.005941907172567855856057662547476250002331,050,000$
10Ryan Poehling (R)XX100.007944947769566757335456682546466250002131,491,667$
11Ryan LombergX100.00726881666862616850617164674444685000253950,000$
12Vitaly Kravtsov (R)X100.007971967571616355505154645144446050002031,775,000$
13Brennan MenellX100.007166826466788361256342654055555950002331,091,666$
14Jacob MiddletonX100.00839975687955685825544768255151605000242735,000$
15Victor MeteX100.00634188816568826025514974256060623500221870,000$
16Matt BenningX100.008358898274617558255247702561616150002621,900,000$
17Roland McKeownX100.00747277677276835125474161394444555000241894,167$
Rayé
1Hunter ShinkarukX100.00736593636557585650475864555252605000252833,000$
2Nikolai Prokhorkin (R)X100.007343957869626265626859597547476550002631,775,000$
3Jake Leschyshyn (R)X100.00746789696775834759434660444444555000213927,500$
4Martin Fehervary (R)X100.00757283727266714725384160394444535000203894,167$
5Otto Leskinen (R)X100.006461707461697452254940563844445350002311,000,000$
6Pierre-Olivier Joseph (R)X100.006963826563697450254441583944445350002031,075,833$
7Dmitri Samorukov (R)X100.00777485627465704625374061384444525000213863,333$
MOYENNE D'ÉQUIPE100.0073608674696573594355556344515161480
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Ryan Miller100.0074545869816859757774878083715000
2Kevin Poulin (R)100.0059556973626055635958304444595000
Rayé
MOYENNE D'ÉQUIPE100.006755647172645769686659626465500
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Bob Hartley72707573878159CAN6133,500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Daniel SprongMonarchs (LAK)LW/RW4881826-136062719426638.51%986618.0531013262260000643033.33%6300000.6001000232
2Paul ByronMonarchs (LAK)C/LW/RW421016262280628890236111.11%885320.3328102719601111542035.63%62300000.6102000412
3Brett ConnollyMonarchs (LAK)LW/RW3751823620045446318477.94%378021.101781717310141411143.59%27300000.5903000231
4Casey MittelstadtMonarchs (LAK)C/LW48131023-13602394101245912.87%778916.457512261220115724051.86%51100010.5801000342
5Brennan MenellMonarchs (LAK)D42412161300442820111120.00%3092121.94268151960000178210.00%000000.3500000101
6Nicholas MerkleyMonarchs (LAK)C/RW489716-15315457068248213.24%684117.53527242350000652152.83%10600100.3800120020
7Victor MeteMonarchs (LAK)D328816-580243142102019.05%2470922.186511271560001108100.00%000000.4500000112
8Matt BenningMonarchs (LAK)D4251116-142069323892513.16%3491921.90347271910000153000.00%000000.3500000113
9Jacob MiddletonMonarchs (LAK)D435914-61023083282882417.86%1884019.543710201860000133000.00%000000.3300105110
10Alexandre TexierMonarchs (LAK)C424913-1214019585525447.27%457613.73123661000032044.47%39800000.4500000101
11Nikolai ProkhorkinMonarchs (LAK)C405712-5200254331142516.13%344011.02112222000091044.97%14900000.5400000101
12Roland McKeownMonarchs (LAK)D486612-575578232761222.22%3590918.965510171430000105010.00%200000.2600010112
13Brian BoyleKingsC/LW152911-114041372412288.33%332421.621787750000631065.81%38900000.6801000101
14Ryan LombergMonarchs (LAK)LW425611-832035456119618.20%156313.420002260000151145.24%4200000.3900000111
15Jesperi KotkaniemiMonarchs (LAK)C22369824034444211497.14%241318.8011215870111471054.96%35300000.4402000100
16Hunter ShinkarukMonarchs (LAK)LW22336-24014231851416.67%31788.123258420001530047.37%3800000.6700000000
17Joel LowryMonarchs (LAK)LW33246-11403028258158.00%42116.410111140110180033.33%2400000.5700000010
18Vitaly KravtsovMonarchs (LAK)RW19336317512231351423.08%525613.4900008000000050.00%1600000.4700100001
19Pierre-Olivier JosephMonarchs (LAK)D28055-1320028149290.00%1649417.65022944000048000.00%000000.2000000010
20Alexander NylanderKingsLW/RW512300034105810.00%09418.991124240001130030.77%1300000.6300000001
21Ryan PoehlingMonarchs (LAK)C/LW34123-21602423138147.69%73069.0000001000090023.33%3000000.2000000101
22Martin FehervaryMonarchs (LAK)D15123-7220331372414.29%625216.82112312000021000.00%000000.2400000000
23Otto LeskinenMonarchs (LAK)D2503312603261150.00%1238815.55000013000052000.00%000000.1500000010
24Mikhail VorobyevMonarchs (LAK)C40112-240713831112.50%31664.170001371011251056.06%6600000.2400000001
25Jake LeschyshynMonarchs (LAK)C2000000000110.00%042.44000020000000100.00%100000.0000000000
Stats d'équipe Total ou en Moyenne814104177281-646275587288388828070611.71%2431310616.104677123284230424615156122547.76%309700110.43010335222123
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Ryan MillerMonarchs (LAK)42201840.8921.98245824817520200.6258420350
2Kevin PoulinMonarchs (LAK)30000.9690.8075001320000.0000042000
Stats d'équipe Total ou en Moyenne45201840.8951.94253324827840200.62584242350


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantSalaire MoyenSalaire Moyen RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Alexandre TexierMonarchs (LAK)C201999-09-13Yes192 Lbs6 ft1NoNoNo3Pro & Farm925,000$372,984$925,000$372,984$0$0$No925,000$925,000$
Brennan MenellMonarchs (LAK)D231997-05-24No183 Lbs5 ft11NoNoNo3Pro & Farm1,091,666$440,188$716,666$288,978$0$0$No716,666$716,666$Lien
Brett ConnollyMonarchs (LAK)LW/RW281992-05-02No195 Lbs6 ft3NoNoNo2Pro & Farm3,500,000$1,411,290$3,500,000$1,411,290$0$0$No3,500,000$Lien
Casey MittelstadtMonarchs (LAK)C/LW211998-11-22No203 Lbs6 ft1NoNoNo2Pro & Farm1,491,666$601,478$1,491,666$601,478$0$0$No1,491,666$Lien
Daniel SprongMonarchs (LAK)LW/RW231997-03-17No180 Lbs6 ft0NoNoNo2Pro & Farm750,000$302,419$750,000$302,419$0$0$No750,000$Lien
Dmitri SamorukovMonarchs (LAK)D211999-06-16Yes196 Lbs6 ft3NoNoNo3Pro & Farm863,333$348,118$863,333$348,118$0$0$No863,333$863,333$
Hunter ShinkarukMonarchs (LAK)LW251994-10-13No181 Lbs5 ft10NoNoNo2Pro & Farm833,000$335,887$833,000$335,887$0$0$No833,000$Lien
Jacob MiddletonMonarchs (LAK)D241996-01-01No200 Lbs6 ft3NoNoNo2Pro & Farm735,000$296,371$450,000$181,452$0$0$No735,000$Lien
Jake LeschyshynMonarchs (LAK)C211999-03-09Yes185 Lbs5 ft11NoNoNo3Pro & Farm927,500$373,992$927,500$373,992$0$0$No927,500$927,500$
Jesperi KotkaniemiMonarchs (LAK)C192000-07-06No188 Lbs6 ft2NoNoNo2Pro & Farm3,425,000$1,381,048$450,000$181,452$0$0$No3,425,000$Lien
Joel LowryMonarchs (LAK)LW281991-11-15Yes180 Lbs6 ft1NoNoNo3Pro & Farm700,000$282,258$700,000$282,258$0$0$No700,000$700,000$
Kevin PoulinMonarchs (LAK)G251995-01-01Yes200 Lbs6 ft0NoNoNo3Pro & Farm700,000$282,258$700,000$282,258$0$0$No700,000$700,000$
Martin FehervaryMonarchs (LAK)D201999-10-06Yes194 Lbs6 ft2NoNoNo3Pro & Farm894,167$360,551$894,167$360,551$0$0$No894,167$894,167$
Matt BenningMonarchs (LAK)D261994-05-25No204 Lbs6 ft1NoNoNo2Pro & Farm1,900,000$766,129$1,900,000$766,129$0$0$No1,900,000$Lien
Mikhail VorobyevMonarchs (LAK)C231997-01-04No194 Lbs6 ft2NoNoNo3Pro & Farm1,050,000$423,387$925,000$372,984$0$0$No925,000$925,000$Lien
Nicholas MerkleyMonarchs (LAK)C/RW231997-05-23Yes194 Lbs5 ft10NoNoNo2Pro & Farm1,075,833$433,804$1,075,833$433,804$0$0$No1,075,833$Lien
Nikolai ProkhorkinMonarchs (LAK)C261993-09-17Yes183 Lbs6 ft2NoNoNo3Pro & Farm1,775,000$715,726$1,775,000$715,726$0$0$No1,775,000$1,775,000$
Otto LeskinenMonarchs (LAK)D231997-02-06Yes168 Lbs5 ft11NoNoNo1Pro & Farm1,000,000$403,226$1,000,000$403,226$0$0$NoLien
Paul ByronMonarchs (LAK)C/LW/RW311989-04-26No162 Lbs5 ft9NoNoNo1Pro & Farm1,166,667$470,430$1,166,667$470,430$0$0$NoLien
Pierre-Olivier JosephMonarchs (LAK)D201999-07-01Yes161 Lbs6 ft2NoNoNo3Pro & Farm1,075,833$433,804$1,075,833$433,804$0$0$No1,075,833$1,075,833$
Roland McKeownMonarchs (LAK)D241996-01-19No195 Lbs6 ft1NoNoNo1Pro & Farm894,167$360,551$894,167$360,551$0$0$NoLien
Ryan LombergMonarchs (LAK)LW251994-12-09No190 Lbs5 ft10NoNoNo3Pro & Farm950,000$383,065$700,000$282,258$0$0$No700,000$700,000$Lien
Ryan MillerMonarchs (LAK)G391980-07-17No173 Lbs6 ft3NoNoNo3Pro & Farm3,325,000$1,340,726$2,325,000$937,500$0$0$No2,325,000$2,325,000$Lien
Ryan PoehlingMonarchs (LAK)C/LW211999-01-02Yes183 Lbs6 ft2NoNoNo3Pro & Farm1,491,667$601,479$1,491,667$601,479$0$0$No1,491,667$1,491,667$
Victor MeteMonarchs (LAK)D221998-06-07No184 Lbs5 ft10NoNoNo1Pro & Farm870,000$350,806$870,000$350,806$0$0$NoLien
Vitaly KravtsovMonarchs (LAK)RW201999-12-23Yes183 Lbs6 ft4NoNoNo3Pro & Farm1,775,000$715,726$925,002$372,985$0$0$No1,775,000$1,775,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2623.88187 Lbs6 ft12.381,353,288$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Brett ConnollyPaul ByronDaniel Sprong35122
2Ryan LombergCasey MittelstadtNicholas Merkley30122
3Ryan PoehlingJesperi KotkaniemiVitaly Kravtsov25122
4Joel LowryAlexandre TexierBrett Connolly10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Victor MeteMatt Benning35122
2Jacob MiddletonBrennan Menell30122
3Roland McKeownAlexandre Texier25122
4Victor MeteMatt Benning10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Brett ConnollyPaul ByronDaniel Sprong60122
2Ryan LombergCasey MittelstadtNicholas Merkley40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Victor MeteMatt Benning60122
2Jacob MiddletonBrennan Menell40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Brett ConnollyPaul Byron60122
2Daniel SprongCasey Mittelstadt40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Victor MeteMatt Benning60122
2Jacob MiddletonBrennan Menell40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Brett Connolly60122Victor MeteMatt Benning60122
2Paul Byron40122Jacob MiddletonBrennan Menell40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Brett ConnollyPaul Byron60122
2Daniel SprongCasey Mittelstadt40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Victor MeteMatt Benning60122
2Jacob MiddletonBrennan Menell40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Brett ConnollyPaul ByronDaniel SprongVictor MeteMatt Benning
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Brett ConnollyPaul ByronDaniel SprongVictor MeteMatt Benning
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Mikhail Vorobyev, Jesperi Kotkaniemi, Ryan PoehlingMikhail Vorobyev, Jesperi KotkaniemiRyan Poehling
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Roland McKeown, Jacob Middleton, Brennan MenellRoland McKeownJacob Middleton, Brennan Menell
Tirs de Pénalité
Brett Connolly, Paul Byron, Daniel Sprong, Casey Mittelstadt, Jesperi Kotkaniemi
Gardien
#1 : Ryan Miller, #2 : Kevin Poulin


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals633000001414021100000440422000001010060.5001422360042333009631528130414111275910133618.18%26388.46%1606130846.33%612127548.00%29465844.68%11778231140358585289
2Bruins1010000025-3000000000001010000025-300.000246004233300193152813041423212148225.00%6183.33%0606130846.33%612127548.00%29465844.68%11778231140358585289
3Condors64200000151053300000010463120000056-180.66715284301423330013231528130414106226410044818.18%30293.33%0606130846.33%612127548.00%29465844.68%11778231140358585289
4Crunch2110000058-3110000004311010000015-420.500581300423330049315281304144519164213215.38%70100.00%0606130846.33%612127548.00%29465844.68%11778231140358585289
5Flames64100001191183210000094532000001107390.7501937560042333001163152813041496237910241717.07%30390.00%2606130846.33%612127548.00%29465844.68%11778231140358585289
6Griffins211000005411010000034-11100000020220.500591401423330041315281304144513322912325.00%150100.00%0606130846.33%612127548.00%29465844.68%11778231140358585289
7IceHogs3020010037-43020010037-40000000000010.16736900423330041315281304146318455712216.67%15193.33%0606130846.33%612127548.00%29465844.68%11778231140358585289
8Monsters11000000211000000000001100000021121.0002460042333001131528130414156899111.11%40100.00%0606130846.33%612127548.00%29465844.68%11778231140358585289
9Moose5130000168-23020000125-32110000043130.3006101601423330072315281304141042883973139.68%37391.89%0606130846.33%612127548.00%29465844.68%11778231140358585289
10Penguins22000000734110000002111100000052341.000710170042333004431528130414311122411218.33%11281.82%0606130846.33%612127548.00%29465844.68%11778231140358585289
11Phantoms11000000422000000000001100000042221.0004812004233300213152813041428101619500.00%6183.33%0606130846.33%612127548.00%29465844.68%11778231140358585289
12Rampage11000000312000000000001100000031221.0003470042333002331528130414221117213133.33%60100.00%0606130846.33%612127548.00%29465844.68%11778231140358585289
13Senators1000000101-11000000101-10000000000010.5000000042333002331528130414100419800.00%20100.00%0606130846.33%612127548.00%29465844.68%11778231140358585289
14Sharks61400001916-73120000057-23020000149-530.2509152400423330012331528130414112328312338821.05%35585.71%0606130846.33%612127548.00%29465844.68%11778231140358585289
15Soldiers211000002201010000001-11100000021120.5002350042333003231528130414201318341200.00%80100.00%0606130846.33%612127548.00%29465844.68%11778231140358585289
16Stars2110000067-11010000024-21100000043120.5006121800423330044315281304144611303710110.00%14285.71%0606130846.33%612127548.00%29465844.68%11778231140358585289
Total48222100104105104124912001024749-2241390000258553490.510105185290034233300902315281304148962516048602984615.44%2582391.09%3606130846.33%612127548.00%29465844.68%11778231140358585289
17Wolves1010000034-11010000034-10000000000000.000358004233300153152813041419516157114.29%60100.00%0606130846.33%612127548.00%29465844.68%11778231140358585289
_Since Last GM Reset48222100104105104124912001024749-2241390000258553490.510105185290034233300902315281304148962516048602984615.44%2582391.09%3606130846.33%612127548.00%29465844.68%11778231140358585289
_Vs Conference341318001026673-718511001013240-816870000134331290.42666114180034233300619315281304146481804476142023316.34%1921691.67%1606130846.33%612127548.00%29465844.68%11778231140358585289
_Vs Division299120000263594145500001302461547000013335-2200.34563112175024233300539315281304145291323685231873217.11%1581689.87%3606130846.33%612127548.00%29465844.68%11778231140358585289

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
4849W110518529090289625160486003
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
4822210104105104
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2491201024749
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
2413900025855
Derniers 10 Matchs
WLOTWOTL SOWSOL
810001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2984615.44%2582391.09%3
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
315281304144233300
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
606130846.33%612127548.00%29465844.68%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
11778231140358585289


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-09-279Sharks3Monarchs1LSommaire du Match
2 - 2020-09-2819Monarchs2Admirals5LSommaire du Match
3 - 2020-09-2922Monarchs3Flames2WSommaire du Match
4 - 2020-09-3033Monarchs2Moose3LSommaire du Match
6 - 2020-10-0246Condors3Monarchs7WSommaire du Match
8 - 2020-10-0460Monarchs2Sharks3LXXSommaire du Match
10 - 2020-10-0667Flames2Monarchs1LSommaire du Match
12 - 2020-10-0878Monarchs2Condors3LSommaire du Match
14 - 2020-10-1089Admirals3Monarchs1LSommaire du Match
16 - 2020-10-12100Flames1Monarchs3WSommaire du Match
18 - 2020-10-14118Monarchs3Condors1WSommaire du Match
20 - 2020-10-16127Moose2Monarchs1LSommaire du Match
22 - 2020-10-18138Sharks1Monarchs2WSommaire du Match
23 - 2020-10-19148Monarchs1Sharks4LSommaire du Match
25 - 2020-10-21165Condors0Monarchs1WSommaire du Match
26 - 2020-10-22179Moose1Monarchs0LSommaire du Match
27 - 2020-10-23183Monarchs1Sharks2LSommaire du Match
29 - 2020-10-25197Monarchs2Griffins0WSommaire du Match
31 - 2020-10-27208Monarchs1Crunch5LSommaire du Match
33 - 2020-10-29218Griffins4Monarchs3LSommaire du Match
35 - 2020-10-31230Crunch3Monarchs4WSommaire du Match
37 - 2020-11-02241Monarchs2Soldiers1WSommaire du Match
39 - 2020-11-04252Monarchs2Bruins5LSommaire du Match
42 - 2020-11-07263Sharks3Monarchs2LSommaire du Match
43 - 2020-11-08271Monarchs2Admirals3LSommaire du Match
44 - 2020-11-09279Monarchs2Flames3LXXSommaire du Match
45 - 2020-11-10286IceHogs2Monarchs1LSommaire du Match
47 - 2020-11-12302IceHogs2Monarchs0LSommaire du Match
48 - 2020-11-13313Monarchs0Condors2LSommaire du Match
49 - 2020-11-14324Monarchs3Admirals1WSommaire du Match
50 - 2020-11-15330Wolves4Monarchs3LSommaire du Match
52 - 2020-11-17346Stars4Monarchs2LSommaire du Match
53 - 2020-11-18358Admirals1Monarchs3WSommaire du Match
55 - 2020-11-20371Monarchs5Flames2WSommaire du Match
56 - 2020-11-21382Moose2Monarchs1LXXSommaire du Match
58 - 2020-11-23398Condors1Monarchs2WSommaire du Match
59 - 2020-11-24407Monarchs4Phantoms2WSommaire du Match
60 - 2020-11-25419IceHogs3Monarchs2LXSommaire du Match
61 - 2020-11-26430Monarchs4Stars3WSommaire du Match
63 - 2020-11-28438Monarchs2Moose0WSommaire du Match
64 - 2020-11-29448Monarchs5Penguins2WSommaire du Match
65 - 2020-11-30458Flames1Monarchs5WSommaire du Match
67 - 2020-12-02471Senators1Monarchs0LXXSommaire du Match
68 - 2020-12-03484Penguins1Monarchs2WSommaire du Match
71 - 2020-12-06497Monarchs3Admirals1WSommaire du Match
72 - 2020-12-07508Monarchs3Rampage1WSommaire du Match
73 - 2020-12-08517Soldiers1Monarchs0LSommaire du Match
74 - 2020-12-09530Monarchs2Monsters1WSommaire du Match
76 - 2020-12-11540Moose-Monarchs-
77 - 2020-12-12552Monarchs-IceHogs-
79 - 2020-12-14560Monarchs-Wolf Pack-
80 - 2020-12-15571Wolf Pack-Monarchs-
81 - 2020-12-16582Monarchs-Admirals-
83 - 2020-12-18593Wolves-Monarchs-
85 - 2020-12-20605Stars-Monarchs-
86 - 2020-12-21619Bruins-Monarchs-
87 - 2020-12-22627Monarchs-Condors-
89 - 2020-12-24639Sharks-Monarchs-
91 - 2020-12-26653Monarchs-Rocket-
92 - 2020-12-27661Monarchs-Wolves-
93 - 2020-12-28670Flames-Monarchs-
94 - 2020-12-29679Monarchs-Flames-
96 - 2020-12-31691Sound Tigers-Monarchs-
97 - 2021-01-01702Monarchs-Moose-
98 - 2021-01-02713Rampage-Monarchs-
100 - 2021-01-04730Rocket-Monarchs-
101 - 2021-01-05737Monarchs-Wolves-
102 - 2021-01-06744Monarchs-Senators-
104 - 2021-01-08759Condors-Monarchs-
105 - 2021-01-09767Monarchs-Sharks-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
106 - 2021-01-10780Monsters-Monarchs-
107 - 2021-01-11791Monarchs-Rampage-
108 - 2021-01-12799Monarchs-Marlies-
109 - 2021-01-13808Marlies-Monarchs-
111 - 2021-01-15820Monarchs-Moose-
113 - 2021-01-17831Flames-Monarchs-
114 - 2021-01-18843Admirals-Monarchs-
116 - 2021-01-20855Monarchs-Sound Tigers-
117 - 2021-01-21866Admirals-Monarchs-
118 - 2021-01-22877Monarchs-Sharks-
119 - 2021-01-23881Monarchs-Soldiers-
123 - 2021-01-27902Phantoms-Monarchs-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
17 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
3,958,635$ 3,518,551$ 2,932,551$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 1,869,932$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 50 56,601$ 2,830,050$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT