Stars

GP: 43 | W: 23 | L: 16 | OTL: 4 | P: 50
GF: 116 | GA: 107 | PP%: 14.34% | PK%: 86.93%
DG: DISPONIBLE | Morale : 50 | Moyenne d'Équipe : N/A
Prochain matchs #473 vs Monsters
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Alex Dostie (R)X100.00716096636059605771456364605555625000233925,000$
2Justin DowlingXXX100.00734390706657706852605969255152645000291650,000$
3Warren FoegeleXX100.00734385677265905941707171255960714700241746,667$
4Adam ErneXX100.00904685727761786557555666756061645000251894,167$
5Tom KuhnhacklXX100.00764497777359565825606074256063655000282700,000$
6Tomas NosekXX100.00794590697959855974606272256062675000272962,500$
7Victor RaskXXX100.006743957275566462666562583667676446002711,000,000$
8Dominik Simon (A)XX100.00734393776967856237686056256364655000254750,000$
9Matthew Strome (R)X100.00827892557861644950454864464444565000213879,167$
10Remi ElieX100.00817790607757585650476066574747615000253450,000$
11Alex Petrovic (R)X100.008381866281606351254740653844445450002811,050,000$
12Connor HobbsX100.00726980596955584525324161395353505000231720,000$
13Joseph Cecconi (R)X100.008176916176525444253439633744445150002331,293,750$
Rayé
1Jan RuttaX100.006743877776676561255348722557586026002912,300,000$
MOYENNE D'ÉQUIPE100.0076579067736068574553556638555561480
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Michael Hutchinson100.0053616181574850555853785959555000
2Joey Daccord (R)100.0060607577626455646160304444605000
Rayé
MOYENNE D'ÉQUIPE100.005761687960565360605754525258500
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Derek Lalonde83807985735884USA4631,250,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dominik SimonStars (DAL)LW/RW4383240-7220408810118547.92%880818.8041519281900001400035.00%4000000.9901000034
2Tomas NosekStars (DAL)C/LW431920391216058100122287515.57%1689220.7628102617701141393160.45%97600000.8701000335
3Adam ErneStars (DAL)LW/RW43152237950010584109287613.76%477317.994610291801012375255.17%2900000.9624000433
4Tom KuhnhacklStars (DAL)LW/RW438273576043668234559.76%1291421.2629112318301101291032.76%5800000.7700000316
5Warren FoegeleStars (DAL)LW/RW43171330-1120597489228019.10%1288820.6684122620620241392345.32%13900100.6801000232
6Victor RaskStars (DAL)C/LW/RW4181826140208776224710.53%683220.314610241700112761259.26%83700000.6211000501
7Matthew StromeStars (DAL)LW436162214915392736132916.67%1172516.8823514155000071145.00%2000000.6101102211
8Alex DostieStars (DAL)C43111021-11215238093296511.83%1176017.69123201500000293256.11%44200010.5524010310
9Remi ElieStars (DAL)LW437815-14435605970204910.00%1265815.321014520000271152.94%3400000.4603100211
10Jan RuttaStars (DAL)D274711-2140173639152210.26%2553519.834593012701101051025.00%400000.4100000010
11Alex PetrovicStars (DAL)D434610-549566241631525.00%2383119.343361218200001461075.00%400000.2400001002
12Justin DowlingStars (DAL)C/LW/RW433710-210031536213324.84%554112.59011167801121470145.80%34500000.3700000020
13Christian FolinStarsD12145-318042713397.69%1225521.28123953000138000.00%100000.3900000100
14Joseph CecconiStars (DAL)D4305515955620101110.00%2974117.250112770000131000.00%200000.1300100010
15Connor HobbsStars (DAL)D430440460521284140.00%2173016.990003540001140000.00%100000.1100000010
Stats d'équipe Total ou en Moyenne596111199310-144193571181792625363311.99%2071089118.2736651012662041358171337191355.76%293200110.57516313252125
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Joey DaccordStars (DAL)34191030.8742.55190301816410100.417123310010
2Michael HutchinsonStars (DAL)134610.9121.8870101222500000.83361023111
Stats d'équipe Total ou en Moyenne47231640.8842.372604021038910100.556184333121


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantSalaire MoyenSalaire Moyen RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Adam ErneStars (DAL)LW/RW251995-04-20No214 Lbs6 ft1NoNoNo1Pro & Farm894,167$418,239$894,167$418,239$0$0$NoLien
Alex DostieStars (DAL)C231997-04-13Yes165 Lbs5 ft10NoNoNo3Pro & Farm925,000$432,661$925,000$432,661$0$0$No925,000$925,000$
Alex PetrovicStars (DAL)D281992-03-03Yes216 Lbs6 ft4NoNoNo1Pro & Farm1,050,000$491,129$1,050,000$491,129$0$0$NoLien
Connor HobbsStars (DAL)D231997-01-04No187 Lbs6 ft1NoNoNo1Pro & Farm720,000$336,774$720,000$336,774$0$0$NoLien
Dominik SimonStars (DAL)LW/RW251994-08-08No190 Lbs5 ft11NoNoNo4Pro & Farm750,000$350,806$750,000$350,806$0$0$No750,000$750,000$750,000$Lien
Jan RuttaStars (DAL)D291990-07-29No200 Lbs6 ft3NoNoNo1Pro & Farm2,300,000$1,075,806$2,300,000$1,075,806$0$0$NoLien
Joey DaccordStars (DAL)G231996-08-19Yes196 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$467,742$1,000,000$467,742$0$0$NoLien
Joseph CecconiStars (DAL)D231997-05-23Yes209 Lbs6 ft2NoNoNo3Pro & Farm1,293,750$605,141$1,293,750$605,141$0$0$No1,293,750$1,293,750$
Justin DowlingStars (DAL)C/LW/RW291990-10-01No185 Lbs5 ft10NoNoNo1Pro & Farm650,000$304,032$650,000$304,032$0$0$NoLien
Matthew StromeStars (DAL)LW211999-01-05Yes206 Lbs6 ft4NoNoNo3Pro & Farm879,167$411,223$879,167$411,223$0$0$No879,167$879,167$
Michael HutchinsonStars (DAL)G301990-03-01No202 Lbs6 ft3NoNoNo1Pro & Farm1,000,000$467,742$1,000,000$467,742$0$0$NoLien
Remi ElieStars (DAL)LW251995-04-15No210 Lbs6 ft1NoNoNo3Pro & Farm450,000$210,484$450,000$210,484$0$0$No450,000$450,000$Lien
Tom KuhnhacklStars (DAL)LW/RW281992-01-21No196 Lbs6 ft2NoNoNo2Pro & Farm700,000$327,419$700,000$327,419$0$0$No700,000$Lien
Tomas NosekStars (DAL)C/LW271992-08-31No210 Lbs6 ft3NoNoNo2Pro & Farm962,500$450,202$962,500$450,202$0$0$No962,500$Lien
Victor RaskStars (DAL)C/LW/RW271993-03-01No200 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$467,742$1,000,000$467,742$0$0$NoLien
Warren FoegeleStars (DAL)LW/RW241996-04-01No190 Lbs6 ft2NoNoNo1Pro & Farm746,667$349,247$746,667$349,247$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1625.63199 Lbs6 ft21.81957,578$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Warren FoegeleTom Kuhnhackl35014
2Matthew StromeTomas NosekAdam Erne35014
3Remi ElieAlex DostieDominik Simon20122
4Justin DowlingTom Kuhnhackl10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Alex Petrovic30032
2Joseph CecconiConnor Hobbs30032
325032
4Joseph CecconiConnor Hobbs15032
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Tom KuhnhacklWarren Foegele60005
2Dominik SimonTomas NosekAdam Erne40014
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Alex PetrovicAlex Dostie50023
2Matthew Strome50023
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Tomas NosekWarren Foegele50041
2Justin DowlingTom Kuhnhackl50041
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Connor Hobbs50050
2Alex PetrovicJoseph Cecconi50050
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Tomas Nosek50050Connor Hobbs50050
2Justin Dowling50050Alex PetrovicJoseph Cecconi50050
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Warren Foegele50023
2Tomas NosekTom Kuhnhackl50023
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Connor Hobbs50032
2Alex PetrovicJoseph Cecconi50032
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Warren FoegeleDominik SimonAlex Petrovic
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Warren FoegeleTomas NosekJustin DowlingAlex Petrovic
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Warren Foegele, Tomas NosekWarren Foegele, Dominik SimonTomas Nosek
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Alex Petrovic, Joseph Cecconi, Alex Petrovic
Tirs de Pénalité
Adam Erne, Alex Dostie, Remi Elie, Matthew Strome,
Gardien
#1 : Joey Daccord, #2 : Michael Hutchinson


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000023-11010000023-10000000000000.000246003548298212943383102919610258112.50%5180.00%0668121155.16%635115055.22%34962256.11%10136931052324542273
2Condors11000000211110000002110000000000021.00024600354829821294338310291641622200.00%7185.71%0668121155.16%635115055.22%34962256.11%10136931052324542273
3Flames1010000002-2000000000001010000002-200.00000000354829815294338310291251019700.00%5180.00%0668121155.16%635115055.22%34962256.11%10136931052324542273
4IceHogs421000011112-1110000005323110000169-350.625111728003548298782943383102910224508017211.76%22386.36%0668121155.16%635115055.22%34962256.11%10136931052324542273
5Monarchs211000007611010000034-11100000042220.5007111800354829846294338310294410223414214.29%10190.00%0668121155.16%635115055.22%34962256.11%10136931052324542273
6Monsters22000000642110000002111100000043141.000611170035482985529433831029261420361119.09%8187.50%0668121155.16%635115055.22%34962256.11%10136931052324542273
7Moose3120000067-1110000003212020000035-220.3336121800354829849294338310294923325418211.11%14378.57%0668121155.16%635115055.22%34962256.11%10136931052324542273
8Penguins1010000001-11010000001-10000000000000.0000000035482981829433831029257620500.00%30100.00%0668121155.16%635115055.22%34962256.11%10136931052324542273
9Rampage7400200132181443000001187113100200014113130.92932609201354829820829433831029178547414034823.53%29775.86%1668121155.16%635115055.22%34962256.11%10136931052324542273
10Senators10000010541100000105410000000000021.0005510003548298232943383102918513218337.50%30100.00%0668121155.16%635115055.22%34962256.11%10136931052324542273
11Sharks11000000312110000003120000000000021.000358003548298292943383102924818213133.33%8187.50%0668121155.16%635115055.22%34962256.11%10136931052324542273
12Soldiers1136000022230-851200002710-3624000001520-580.364224062013548298219294338310292365215021273810.96%53590.57%1668121155.16%635115055.22%34962256.11%10136931052324542273
Total431916030141161079211250001360402022711030015667-11500.581116205321023548298954294338310298912524898152513614.34%1992686.93%3668121155.16%635115055.22%34962256.11%10136931052324542273
13Wolf Pack1010000024-2000000000001010000024-200.00024600354829822294338310292161016500.00%50100.00%1668121155.16%635115055.22%34962256.11%10136931052324542273
14Wolves742010001814433000000103741201000811-3100.71418325000354829815029433831029121345811546817.39%27292.59%0668121155.16%635115055.22%34962256.11%10136931052324542273
_Since Last GM Reset431916030141161079211250001360402022711030015667-11500.581116205321023548298954294338310298912524898152513614.34%1992686.93%3668121155.16%635115055.22%34962256.11%10136931052324542273
_Vs Conference37171303004103921118114000035334191969030015058-8440.595103185288023548298821294338310297892154307032153214.88%1752486.29%2668121155.16%635115055.22%34962256.11%10136931052324542273
_Vs Division2913903004837491382000034023171657030014351-8360.62183149232023548298655294338310296371643325471702615.29%1311787.02%2668121155.16%635115055.22%34962256.11%10136931052324542273

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
4350W311620532195489125248981502
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
4319163014116107
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2112500136040
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
2271130015667
Derniers 10 Matchs
WLOTWOTL SOWSOL
430003
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2513614.34%1992686.93%3
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
294338310293548298
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
668121155.16%635115055.22%34962256.11%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
10136931052324542273


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-09-273Soldiers1Stars0LSommaire du Match
2 - 2020-09-2815Stars2Soldiers5LSommaire du Match
4 - 2020-09-3026Stars2Soldiers3LSommaire du Match
5 - 2020-10-0139Soldiers3Stars1LSommaire du Match
6 - 2020-10-0249Rampage0Stars2WSommaire du Match
9 - 2020-10-0566Soldiers2Stars1LXXSommaire du Match
10 - 2020-10-0670Stars4Soldiers3WSommaire du Match
12 - 2020-10-0886Penguins1Stars0LSommaire du Match
14 - 2020-10-1093Stars2Wolves1WXSommaire du Match
16 - 2020-10-12102Stars1Soldiers4LSommaire du Match
18 - 2020-10-14111Stars6Rampage5WXSommaire du Match
20 - 2020-10-16128Admirals3Stars2LSommaire du Match
22 - 2020-10-18143Wolves1Stars3WSommaire du Match
23 - 2020-10-19154Stars2Wolves5LSommaire du Match
24 - 2020-10-20159Stars4Monsters3WSommaire du Match
25 - 2020-10-21171Moose2Stars3WSommaire du Match
27 - 2020-10-23180Stars3IceHogs2WSommaire du Match
28 - 2020-10-24189Sharks1Stars3WSommaire du Match
30 - 2020-10-26204Condors1Stars2WSommaire du Match
32 - 2020-10-28211Stars4Rampage3WXSommaire du Match
34 - 2020-10-30226Stars4Soldiers2WSommaire du Match
36 - 2020-11-01231Senators4Stars5WXXSommaire du Match
38 - 2020-11-03243Stars1Moose2LSommaire du Match
40 - 2020-11-05256Wolves1Stars5WSommaire du Match
42 - 2020-11-07266Stars1IceHogs4LSommaire du Match
44 - 2020-11-09276Stars2Moose3LSommaire du Match
45 - 2020-11-10284Wolves1Stars2WSommaire du Match
46 - 2020-11-11298Rampage1Stars7WSommaire du Match
48 - 2020-11-13314Rampage1Stars5WSommaire du Match
49 - 2020-11-14319Stars1Wolves4LSommaire du Match
50 - 2020-11-15326Stars0Flames2LSommaire du Match
51 - 2020-11-16340Soldiers0Stars2WSommaire du Match
52 - 2020-11-17346Stars4Monarchs2WSommaire du Match
54 - 2020-11-19364Stars2IceHogs3LXXSommaire du Match
55 - 2020-11-20369Soldiers4Stars3LXXSommaire du Match
56 - 2020-11-21380Stars2Soldiers3LSommaire du Match
57 - 2020-11-22392Rampage5Stars4LXXSommaire du Match
59 - 2020-11-24409Monsters1Stars2WSommaire du Match
60 - 2020-11-25421Stars2Wolf Pack4LSommaire du Match
61 - 2020-11-26430Monarchs4Stars3LSommaire du Match
64 - 2020-11-29443Stars4Rampage3WSommaire du Match
65 - 2020-11-30454IceHogs3Stars5WSommaire du Match
66 - 2020-12-01463Stars3Wolves1WSommaire du Match
67 - 2020-12-02473Monsters-Stars-
68 - 2020-12-03485Stars-Monsters-
70 - 2020-12-05493Stars-Griffins-
71 - 2020-12-06503IceHogs-Stars-
72 - 2020-12-07514Stars-Marlies-
74 - 2020-12-09525Admirals-Stars-
75 - 2020-12-10539Stars-Penguins-
77 - 2020-12-12545Griffins-Stars-
79 - 2020-12-14561Wolves-Stars-
80 - 2020-12-15573Stars-Sound Tigers-
81 - 2020-12-16581Stars-Rocket-
83 - 2020-12-18595Sound Tigers-Stars-
85 - 2020-12-20605Stars-Monarchs-
86 - 2020-12-21614Phantoms-Stars-
87 - 2020-12-22628Sharks-Stars-
89 - 2020-12-24640Stars-Bruins-
91 - 2020-12-26650Stars-Rampage-
92 - 2020-12-27660Bruins-Stars-
94 - 2020-12-29672Wolf Pack-Stars-
95 - 2020-12-30686Crunch-Stars-
96 - 2020-12-31693Stars-IceHogs-
97 - 2021-01-01706Stars-Soldiers-
98 - 2021-01-02716Moose-Stars-
99 - 2021-01-03722Stars-Senators-
101 - 2021-01-05738Condors-Stars-
103 - 2021-01-07752Marlies-Stars-
104 - 2021-01-08766Stars-Flames-
105 - 2021-01-09774Flames-Stars-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
106 - 2021-01-10783Stars-Sharks-
108 - 2021-01-12796Stars-Phantoms-
109 - 2021-01-13806Stars-Condors-
110 - 2021-01-14811Soldiers-Stars-
112 - 2021-01-16828Stars-Crunch-
113 - 2021-01-17834Rocket-Stars-
115 - 2021-01-19846Stars-Moose-
116 - 2021-01-20853Stars-Admirals-
117 - 2021-01-21859IceHogs-Stars-
119 - 2021-01-23878Senators-Stars-
122 - 2021-01-26895IceHogs-Stars-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
20 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,450,884$ 1,532,126$ 1,532,126$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 785,567$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 58 22,436$ 1,301,288$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT