Monsters

GP: 7 | W: 4 | L: 3 | OTL: 0 | P: 8
GF: 15 | GA: 13 | PP%: 14.29% | PK%: 89.19%
DG: Yvon Poulin | Morale : 50 | Moyenne d'Équipe : N/A
Prochain matchs #87 vs Sound Tigers
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Charles HudonXX100.00824499746659646433575854755959625000
2Eric Cornel (R)XX100.00797296647279865670475866555151625000
3Drake CaggiulaXX100.00857777826861655934627467256464715000
4Nicolas RoyX100.00794590687859826272647163254747695000
5Kevin Stenlund (R)XX100.00674391658066817554617161254747695000
6Nick Moutrey (R)X100.00818082658069744961464764454444565000
7Rasmus Asplund (R)XXX100.00694292686457866155575685254646655000
8Tyler Benson (R)X100.00737079717075786350665763544444645000
9Paul Bittner (R)X100.00808079688066705150475164484444575000
10Sonny MilanoXX100.00654286837364636625746459255253675000
11Connor Dewar (R)XX100.00706387656369735468535060484444575000
12Brendan GuhleX100.00694289756971755725505474255858635000
13Cale Fleury (R)X100.00904694777464735325394769254747595000
14Mirco MuellerX100.00785786687972695925494890256061635000
15Slater KoekkoekX100.00804472767270596325554780255758625000
16Mike ReillyX100.0073438478737568732566476725606063500X0
17Devon ToewsX100.00714291806881877825655065636263655000
Rayé
1Pascal Laberge (R)X100.00706582646552515670466160584444595000
2Michael McCarronXX100.00788853658861625974506266594949615000
3Gabriel CarlssonX100.00797589787569755025424165395252565000
4Ryan Collins (R)X100.00828184528155574825384264404444535000
5Markus NutivaaraX100.0073439682716876622552495925626360500X0
MOYENNE D'ÉQUIPE100.0076588571736672604354556739525262500
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Calvin Pickard100.0054587377535852585756305757565000
2Oscar Dansk100.0060688579586556646160304444615000
Rayé
1Jakub Skarek (R)100.0049526579474850544848304444505000
MOYENNE D'ÉQUIPE100.005459747853575359555530484856500
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Rick Tocchet84927887817667CAN5731,500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Kevin StenlundMonsters (CLB)C/RW743710034172523.53%011917.04123538000000175.00%800001.1700000210
2Devon ToewsMonsters (CLB)D7066-1555912180.00%616423.520331239000031000.00%000000.7300001000
3Mirco MuellerMonsters (CLB)D713404023104710.00%414721.05112939000026000.00%000000.5400000001
4Rasmus AsplundMonsters (CLB)C/LW/RW7314-120213103430.00%39313.37101310000000038.03%7100000.8500000101
5Slater KoekkoekMonsters (CLB)D70440801545180.00%214520.73022538000024000.00%000000.5500000001
6Mike ReillyMonsters (CLB)D713406015662316.67%716223.27112639000028000.00%000000.4900000100
7Brendan GuhleMonsters (CLB)D7033-140324120.00%910815.460112700006000.00%000000.5500000000
8Nicolas RoyMonsters (CLB)C721321001312116818.18%013118.801013370000121053.21%10900000.4600000000
9Tyler BensonMonsters (CLB)LW71120006311329.09%111015.7200004000021100.00%600000.3600000010
10Charles HudonMonsters (CLB)LW/RW71012409631433.33%011917.07101237000001050.00%400000.1700000010
11Drake CaggiulaMonsters (CLB)LW/RW71010221015313287.69%013619.450005360001231028.57%700000.1500011010
12Paul BittnerMonsters (CLB)LW70110601031120.00%110114.4400000000000066.67%300000.2000000000
13Sonny MilanoMonsters (CLB)LW/RW7101-14071380612.50%114220.421011360000120017.65%1700000.1400000000
14Connor DewarMonsters (CLB)C/LW7011-300110120.00%0385.46000011000060083.33%600000.5200000000
15Cale FleuryMonsters (CLB)D700002001430200.00%710815.510000500008000.00%000000.0000000000
16Nick MoutreyMonsters (CLB)C6000-100210000.00%0233.9900000000000043.75%1600000.0000000000
17Pavel ZachaBlue JacketsC/LW30000552115010.00%16321.05000425000080049.41%8500000.0000100000
Stats d'équipe Total ou en Moyenne114152742-31002012497116307012.93%42191616.81710175740800012124146.39%33200000.4400112443
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Oscar DanskMonsters (CLB)74300.8911.8641901131190100.000070001
Stats d'équipe Total ou en Moyenne74300.8911.8641901131190100.000070001


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantSalaire MoyenSalaire Moyen RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Brendan GuhleMonsters (CLB)D221997-07-29No186 Lbs6 ft1NoNoNo3Pro & Farm946,083$946,083$888,833$888,833$0$0$No888,833$888,833$Lien
Cale FleuryMonsters (CLB)D211998-11-19Yes203 Lbs6 ft1NoNoNo3Pro & Farm883,333$883,333$883,333$883,333$0$0$No883,333$883,333$
Calvin PickardMonsters (CLB)G281992-04-14No207 Lbs6 ft1NoNoNo1Pro & Farm1,000,000$1,000,000$1,000,000$1,000,000$0$0$NoLien
Charles HudonMonsters (CLB)LW/RW261994-06-23No188 Lbs5 ft10NoNoNo3Pro & Farm650,000$650,000$725,000$725,000$0$0$No650,000$650,000$Lien
Connor DewarMonsters (CLB)C/LW211999-06-26Yes176 Lbs5 ft10NoNoNo3Pro & Farm925,000$925,000$925,000$925,000$0$0$No925,000$925,000$
Devon ToewsMonsters (CLB)D261994-02-20No181 Lbs6 ft1NoNoNo2Pro & Farm700,000$700,000$700,000$700,000$0$0$No700,000$Lien
Drake CaggiulaMonsters (CLB)LW/RW261994-06-20No185 Lbs5 ft10NoNoNo1Pro & Farm1,350,000$1,350,000$1,350,000$1,350,000$0$0$NoLien
Eric CornelMonsters (CLB)C/RW241996-04-11Yes194 Lbs6 ft2NoNoNo3Pro & Farm925,000$925,000$925,000$925,000$0$0$No925,000$925,000$
Gabriel CarlssonMonsters (CLB)D231997-01-02No192 Lbs6 ft5NoNoNo2Pro & Farm894,166$894,166$894,166$894,166$0$0$No894,166$Lien
Jakub SkarekMonsters (CLB)G201999-11-10Yes196 Lbs6 ft3NoNoNo3Pro & Farm927,500$927,500$927,500$927,500$0$0$No927,500$927,500$
Kevin StenlundMonsters (CLB)C/RW231996-09-20Yes210 Lbs6 ft4NoNoNo3Pro & Farm925,000$925,000$925,000$925,000$0$0$No925,000$925,000$
Markus NutivaaraMonsters (CLB)D261994-06-06No191 Lbs6 ft1NoYesNo3Pro & Farm2,700,000$2,700,000$2,700,000$2,700,000$0$0$No2,700,000$2,700,000$Lien
Michael McCarronMonsters (CLB)C/RW251995-03-06No231 Lbs6 ft6NoNoNo1Pro & Farm1,075,833$1,075,833$1,075,833$1,075,833$0$0$NoLien
Mike ReillyMonsters (CLB)D261993-07-12No195 Lbs6 ft2NoYesNo3Pro & Farm1,500,000$1,500,000$1,500,000$1,500,000$0$0$No1,500,000$1,500,000$Lien
Mirco MuellerMonsters (CLB)D251995-03-21No210 Lbs6 ft3NoNoNo1Pro & Farm1,400,000$1,400,000$1,400,000$1,400,000$0$0$NoLien
Nick MoutreyMonsters (CLB)C251995-06-23Yes218 Lbs6 ft3NoNoNo2Pro & Farm925,000$925,000$925,000$925,000$0$0$No925,000$
Nicolas RoyMonsters (CLB)C231997-02-05No208 Lbs6 ft4NoNoNo1Pro & Farm815,000$815,000$815,000$815,000$0$0$NoLien
Oscar DanskMonsters (CLB)G261994-02-28No195 Lbs6 ft3NoNoNo2Pro & Farm675,000$675,000$675,000$675,000$0$0$No675,000$Lien
Pascal LabergeMonsters (CLB)C221998-04-08Yes173 Lbs6 ft1NoNoNo3Pro & Farm863,333$863,333$863,333$863,333$0$0$No863,333$863,333$
Paul BittnerMonsters (CLB)LW231996-11-03Yes214 Lbs6 ft4NoNoNo3Pro & Farm863,333$863,333$863,333$863,333$0$0$No863,333$863,333$
Rasmus AsplundMonsters (CLB)C/LW/RW221997-12-02Yes176 Lbs5 ft11NoNoNo3Pro & Farm925,000$925,000$925,000$925,000$0$0$No925,000$925,000$
Ryan CollinsMonsters (CLB)D241996-05-06Yes212 Lbs6 ft5NoNoNo3Pro & Farm925,000$925,000$925,000$925,000$0$0$No925,000$925,000$
Slater KoekkoekMonsters (CLB)D261994-02-18No193 Lbs6 ft2NoNoNo1Pro & Farm800,000$800,000$800,000$800,000$0$0$NoLien
Sonny MilanoMonsters (CLB)LW/RW241996-05-11No195 Lbs6 ft2NoNoNo1Pro & Farm1,263,333$1,263,333$1,263,333$1,263,333$0$0$NoLien
Tyler BensonMonsters (CLB)LW221998-03-15Yes192 Lbs6 ft0NoNoNo3Pro & Farm863,333$863,333$863,333$863,333$0$0$No863,333$863,333$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2523.96197 Lbs6 ft22.281,028,810$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Drake CaggiulaSonny Milano35122
2Charles HudonNicolas RoyKevin Stenlund30122
3Tyler BensonRasmus AsplundPaul Bittner25122
4Paul BittnerNick MoutreySonny Milano10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Devon ToewsMike Reilly35122
2Mirco MuellerSlater Koekkoek30122
3Brendan GuhleCale Fleury25122
4Devon ToewsMike Reilly10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Drake CaggiulaSonny Milano60122
2Charles HudonNicolas RoyKevin Stenlund40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Devon ToewsMike Reilly60122
2Mirco MuellerSlater Koekkoek40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Drake Caggiula60122
2Sonny MilanoNicolas Roy40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Devon ToewsMike Reilly60122
2Mirco MuellerSlater Koekkoek40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
160122Devon ToewsMike Reilly60122
2Drake Caggiula40122Mirco MuellerSlater Koekkoek40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Drake Caggiula60122
2Sonny MilanoNicolas Roy40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Devon ToewsMike Reilly60122
2Mirco MuellerSlater Koekkoek40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Drake CaggiulaSonny MilanoDevon ToewsMike Reilly
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Drake CaggiulaSonny MilanoDevon ToewsMike Reilly
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Connor Dewar, Rasmus Asplund, Tyler BensonConnor Dewar, Rasmus AsplundTyler Benson
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Brendan Guhle, Cale Fleury, Mirco MuellerBrendan GuhleCale Fleury, Mirco Mueller
Tirs de Pénalité
, Drake Caggiula, Sonny Milano, Nicolas Roy, Kevin Stenlund
Gardien
#1 : Oscar Dansk, #2 : Calvin Pickard


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Penguins321000006421010000012-12200000052340.66761016005820503250340409545030413.33%15286.67%08018343.72%6616739.52%4610046.00%166111166528646
2Phantoms21100000651211000006510000000000020.500612180058204132503403719243612325.00%11281.82%08018343.72%6616739.52%4610046.00%166111166528646
3Sound Tigers1010000014-31010000014-30000000000000.000123005820832503403181422200.00%70100.00%08018343.72%6616739.52%4610046.00%166111166528646
Total743000001513241300000811-33300000072580.57115274201582011632503401194210012549714.29%37489.19%08018343.72%6616739.52%4610046.00%166111166528646
5Wolf Pack11000000202000000000001100000020221.000235015820173250340116817500.00%40100.00%08018343.72%6616739.52%4610046.00%166111166528646
_Since Last GM Reset743000001513241300000811-33300000072580.57115274201582011632503401194210012549714.29%37489.19%08018343.72%6616739.52%4610046.00%166111166528646
_Vs Conference642000001495312000007703300000072580.667142539015820108325034088348610347714.89%30486.67%08018343.72%6616739.52%4610046.00%166111166528646
_Vs Division742000001513241200000811-33300000072580.57115274201582011632503401194210012549714.29%37489.19%08018343.72%6616739.52%4610046.00%166111166528646

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
78W11527421161194210012501
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
74300001513
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4130000811
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
330000072
Derniers 10 Matchs
WLOTWOTL SOWSOL
430000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
49714.29%37489.19%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
32503405820
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
8018343.72%6616739.52%4610046.00%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
166111166528646


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-09-035Phantoms3Monsters2LSommaire du Match
2 - 2020-09-0417Monsters2Penguins1WSommaire du Match
4 - 2020-09-0624Monsters3Penguins1WSommaire du Match
5 - 2020-09-0736Phantoms2Monsters4WSommaire du Match
8 - 2020-09-1056Penguins2Monsters1LSommaire du Match
9 - 2020-09-1170Sound Tigers4Monsters1LSommaire du Match
10 - 2020-09-1279Monsters2Wolf Pack0WSommaire du Match
11 - 2020-09-1387Monsters-Sound Tigers-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
13 - 2020-09-1597Wolf Pack-Monsters-
14 - 2020-09-16108Monsters-Phantoms-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
1 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
0$ 2,572,023$ 2,573,798$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 0$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 5 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT