Banshees

GP: 52 | W: 34 | L: 9 | T: 8 | P: 77
GF: 191 | GA: 140 | PP%: 19.61% | PK%: 81.82%
DG: Louis-Philippe DesHaies | Morale : 74 | Moyenne d'Équipe : 65
Prochain matchs #361 vs Citadelles
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Andrei Kovalenko (R)X100.007255667075706975677979726832358175680232620,000$
2Alexander SemakX100.007060646771737281728278697035384755680281475,000$
3Wes WalzX100.005844757370727274667478767240408172680231300,000$
4Greg GilbertX100.005943836572717170636665796461682480660312550,000$
5Ryan Walter (C)X100.00554668627372716762666482638078180660352325,000$
6Steve LeachX100.007458686374717274667275737142435368660272525,000$
7Garry ValkX100.006955686375757665627166816435356280650261500,000$
8Jeff DanielsX100.005541806775687069657262736048516850640251250,000$
9Craig ConroyX100.006350697175707172667260735826328965640224700,000$
10Brian RolstonX99.005444737174676671657168756428289775640202500,000$
11Mariusz Czerkawski (R)X100.005644726973676774657271636630339579630212400,000$
12Martin Lapointe (R)X100.006056626674636362656264676427279843590202500,000$
13Murray Baron (A)X100.007461646278767660567156875143446180670263635,000$
14Jason WoolleyX100.006650757474737470647063806036407680670242700,000$
15Bill Berg (R) (A)X100.006347836376707273587270795843466080660262385,000$
16Chris JosephX100.007050766578656664617048804547526880650251310,000$
17Peter AholaX100.006956626774676766637361765833336981630253500,000$
18Philippe Boucher (R)X100.006450716477646464586752774827309869620202250,000$
Rayé
1Terry YakeX100.006549807072717367646764756362646855660251440,000$
2Jody HullX100.006448797174707171677172746846407460660243535,000$
3Jose CharbonneauX100.007157626573687066647069676651475232640271100,000$
4Mike SillingerX100.006148746874656565636966716428288920620222320,000$
5Todd Warriner (R)X100.006047706670646459576655655228309620580194325,000$
6Lyndon ByersX100.007274315467646443424845744353593820540291100,000$
7Neil WilkinsonX100.007661676773697161586442814045535923650261525,000$
MOYENNE D'ÉQUIPE99.96655270677469696762696475604143686164
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jim Hrivnak100.00717480777676818681747245416872720
2Craig Billington100.00757672707476798480767651465566710
Rayé
1Fred Brathwaite (R)100.00687475657370687073716943408419650
MOYENNE D'ÉQUIPE100.0071757671747476807874724642695269
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
John Tortorella78778177748490USA36295,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Alexander SemakBanshees (PHI)C36143044938106170105328913.33%266418.4531417361580000193153.51%85400101.3200002450
2Murray BaronBanshees (PHI)D5210324276151234470204314.29%61125724.1751318502440000162100.00%000000.6700001304
3Wes WalzBanshees (PHI)C471527421420041119159341009.43%792019.59413174621100041075048.80%116400000.9100000233
4Jason WoolleyBanshees (PHI)D4473037818037617526639.33%45105724.0251621452090002132220.00%000000.7000000120
5Bill BergBanshees (PHI)D5233235166033477214524.17%5299019.0536944188000038000.00%000000.7100000103
6Peter AholaBanshees (PHI)D521121329775984456273719.64%36101019.43941340198000068100.00%000000.6300100213
7Steve LeachBanshees (PHI)RW4313193212435734375315217.33%360614.0928101781000002145.45%3300001.0600001241
8Andrei KovalenkoBanshees (PHI)RW3818133112009955118318515.25%572719.13461025181000083034.72%7200020.8500000442
9Mariusz CzerkawskiBanshees (PHI)RW46171330640393484284920.24%165014.151151633191000004059.57%4700000.9200000420
10Brian RolstonBanshees (PHI)LW5172027-42023769731697.22%690317.7211011221900001731139.44%7100000.6000000111
11Greg GilbertBanshees (PHI)LW52111526940174886275212.79%963812.282359520001493150.94%5300000.8100000122
12Jeff DanielsBanshees (PHI)LW29101222148082433103130.30%039113.491341285000032144.00%2500001.1200000222
13Dallas DrakeFlyersLW281192011100485488277712.50%1261121.841011712400021052148.28%5800000.6500000321
14Craig ConroyBanshees (PHI)C45713204280367868175110.29%256212.5112315990001200048.86%65900000.7100000013
15Chris JosephBanshees (PHI)D524141895007643444349.09%62100519.33224271240220152000.00%000000.3600000221
16Ryan WalterBanshees (PHI)C5210717-2402210455174318.18%1069013.29314103700031920050.86%87700000.4900000011
17Garry ValkBanshees (PHI)LW52116175315595581174513.58%760211.5802253420291102151.56%6400000.5600010114
18Philippe BoucherBanshees (PHI)D4611415152403436148147.14%4977016.761233160111134000.00%000000.3900000100
19Terry YakeBanshees (PHI)C31381151001946357258.57%235911.590001140000280149.07%37500000.6100000000
20Jody HullBanshees (PHI)RW296410-3120262957132210.53%434611.96101536000162047.37%1900000.5800000102
21Jose CharbonneauBanshees (PHI)RW21055480345155110.00%22079.89000310000050033.33%2100000.4800000010
22Martin LapointeBanshees (PHI)RW151123205682212.50%01298.61000150000100100.00%100000.3100000000
23Neil WilkinsonBanshees (PHI)D14112-2100251381412.50%1225117.99101424000042100.00%000000.1600000000
24Lyndon ByersBanshees (PHI)RW90112601120000.00%0667.4300000000000066.67%300000.3000000000
25Mike SillingerBanshees (PHI)C1000000030100.00%01111.2800000000010050.00%1200000.0000000000
Stats d'équipe Total ou en Moyenne93719134753815249630104711391503430105012.71%3891543416.47601101704702522235251467341049.84%440800120.7000114353433
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jim HrivnakBanshees (PHI)3925750.8882.822253211069440300.00003814200
2Craig BillingtonBanshees (PHI)138320.8932.2073802272530100.00001231101
3Fred BrathwaiteBanshees (PHI)41010.8832.32181007600000.000027000
Stats d'équipe Total ou en Moyenne56341080.8892.6531732314012570400.00005252301


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Alexander SemakBanshees (PHI)C281992-02-09 9:08:37 PMNo185 Lbs5 ft10NoNoNo1Pro & Farm475,000$47,500$18,511$No
Andrei KovalenkoBanshees (PHI)RW231997-02-09 9:08:37 PMYes210 Lbs5 ft10NoNoNo2Pro & Farm620,000$62,000$24,162$No620,000$
Bill BergBanshees (PHI)D261994-02-09 9:08:37 PMYes205 Lbs6 ft1NoNoNo2Pro & Farm385,000$38,500$15,004$No385,000$
Brian RolstonBanshees (PHI)LW202000-02-09 9:08:37 PMNo200 Lbs6 ft2NoNoNo2Pro & Farm500,000$50,000$19,485$No500,000$
Chris JosephBanshees (PHI)D251995-02-09 9:08:37 PMNo210 Lbs6 ft2NoNoNo1Pro & Farm310,000$31,000$12,081$No
Craig BillingtonBanshees (PHI)G271993-02-09 9:08:37 PMNo170 Lbs5 ft10NoNoNo3Pro & Farm780,000$78,000$30,397$No780,000$780,000$
Craig ConroyBanshees (PHI)C221998-02-09 9:08:37 PMNo198 Lbs6 ft2NoNoNo4Pro & Farm700,000$70,000$27,279$No700,000$700,000$700,000$
Fred BrathwaiteBanshees (PHI)G221998-08-11 10:33:53 AMYes185 Lbs5 ft7NoNoNo3Pro & Farm250,000$25,000$9,743$No250,000$250,000$
Garry ValkBanshees (PHI)LW261994-02-09 9:08:37 PMNo205 Lbs6 ft1NoNoNo1Pro & Farm500,000$50,000$19,485$No
Greg GilbertBanshees (PHI)LW311989-02-09 9:08:37 PMNo195 Lbs6 ft1NoNoNo2Pro & Farm550,000$55,000$21,434$No550,000$
Jason WoolleyBanshees (PHI)D241996-02-09 9:08:37 PMNo188 Lbs6 ft1NoNoNo2Pro & Farm700,000$70,000$27,279$No700,000$
Jeff DanielsBanshees (PHI)LW251995-02-09 9:08:37 PMNo200 Lbs6 ft1NoNoNo1Pro & Farm250,000$25,000$9,743$No
Jim HrivnakBanshees (PHI)G251995-02-09 9:08:37 PMNo185 Lbs6 ft2NoNoNo2Pro & Farm900,000$90,000$35,074$No900,000$
Jody HullBanshees (PHI)RW241996-02-09 9:08:37 PMNo195 Lbs6 ft2NoNoNo3Pro & Farm535,000$53,500$20,849$No535,000$535,000$
Jose CharbonneauBanshees (PHI)RW271993-02-09 9:08:37 PMNo195 Lbs6 ft0NoNoNo1Pro & Farm100,000$10,000$3,897$No
Lyndon ByersBanshees (PHI)RW291991-02-09 9:08:37 PMNo190 Lbs6 ft1NoNoNo1Pro & Farm100,000$10,000$3,897$No
Mariusz CzerkawskiBanshees (PHI)RW211999-02-09 9:08:37 PMYes200 Lbs6 ft0NoNoNo2Pro & Farm400,000$40,000$15,588$No400,000$
Martin LapointeBanshees (PHI)RW202000-02-09 9:08:37 PMYes200 Lbs6 ft0NoNoNo2Pro & Farm500,000$50,000$19,485$No500,000$
Mike SillingerBanshees (PHI)C221998-02-09 9:08:37 PMNo200 Lbs6 ft0NoNoNo2Pro & Farm320,000$32,000$12,471$No320,000$
Murray BaronBanshees (PHI)D261994-02-09 9:08:37 PMNo218 Lbs6 ft3NoNoNo3Pro & Farm635,000$63,500$24,746$No635,000$635,000$
Neil WilkinsonBanshees (PHI)D261994-02-09 9:08:37 PMNo180 Lbs6 ft3NoNoNo1Pro & Farm525,000$52,500$20,460$No
Peter AholaBanshees (PHI)D251995-02-09 9:08:37 PMNo205 Lbs6 ft3NoNoNo3Pro & Farm500,000$50,000$19,485$No500,000$500,000$
Philippe BoucherBanshees (PHI)D202000-02-09 9:08:37 PMYes212 Lbs6 ft3NoNoNo2Pro & Farm250,000$25,000$9,743$No250,000$
Ryan WalterBanshees (PHI)C351985-02-09 9:08:37 PMNo195 Lbs6 ft0NoNoNo2Pro & Farm325,000$32,500$12,665$No325,000$
Steve LeachBanshees (PHI)RW271993-02-09 9:08:37 PMNo200 Lbs5 ft11NoNoNo2Pro & Farm525,000$52,500$20,460$No525,000$
Terry YakeBanshees (PHI)C251995-02-09 9:08:37 PMNo185 Lbs5 ft11NoNoNo1Pro & Farm440,000$44,000$17,147$No
Todd WarrinerBanshees (PHI)LW192001-02-09 9:08:37 PMYes182 Lbs6 ft1NoNoNo4Pro & Farm325,000$32,500$12,665$No325,000$325,000$325,000$
Wes WalzBanshees (PHI)C231997-02-09 9:08:37 PMNo180 Lbs5 ft10NoNoNo1Pro & Farm300,000$30,000$11,691$No
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2824.75195 Lbs6 ft12.00453,571$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Brian RolstonAlexander SemakAndrei Kovalenko35023
2Jeff DanielsWes WalzSteve Leach30023
3Greg GilbertCraig ConroyMariusz Czerkawski20023
4Garry ValkRyan WalterMartin Lapointe15023
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jason WoolleyMurray Baron35032
2Peter AholaBill Berg30032
3Chris JosephPhilippe Boucher20032
4Murray BaronPhilippe Boucher15032
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Brian RolstonAlexander SemakAndrei Kovalenko60014
2Jeff DanielsWes WalzMariusz Czerkawski40014
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Peter AholaChris Joseph60131
2Murray BaronJason Woolley40131
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Ryan WalterBrian Rolston60041
2Craig ConroyGarry Valk40041
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Murray BaronJason Woolley60140
2Chris JosephPhilippe Boucher40140
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Ryan Walter60050Chris JosephJason Woolley60122
2Wes Walz40050Murray BaronPhilippe Boucher40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Alexander SemakAndrei Kovalenko60122
2Craig ConroyGarry Valk40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chris JosephJason Woolley60122
2Murray BaronBill Berg40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Brian RolstonAlexander SemakAndrei KovalenkoJason WoolleyMurray Baron
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Garry ValkRyan WalterAndrei KovalenkoMurray BaronJason Woolley
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Andrei Kovalenko, Ryan Walter, Garry ValkSteve Leach, Ryan WalterGarry Valk
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Chris Joseph, Peter Ahola, Murray BaronChris JosephPeter Ahola, Murray Baron
Tirs de Pénalité
Steve Leach, Andrei Kovalenko, Brian Rolston, Mariusz Czerkawski, Martin Lapointe
Gardien
#1 : Craig Billington, #2 : Jim Hrivnak


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Ailes Rouges430100001697220000009452101000075270.875162844006467564128519479472329528457724312.50%15286.67%0901180749.86%830169848.88%46690351.61%12808661205411691353
2As4130000011110312000009721010000024-220.250112132006467564106519479472329026347925624.00%15286.67%0901180749.86%830169848.88%46690351.61%12808661205411691353
3Canadiens43001000191181100000063332001000138581.000193655006467564137519479472328529328522731.82%16475.00%1901180749.86%830169848.88%46690351.61%12808661205411691353
4Chiefs40220000816-81010000025-330120000611-520.25081220006467564111519479472321083548811516.67%23578.26%0901180749.86%830169848.88%46690351.61%12808661205411691353
5Citadelles520111002117411000000523410111001615180.80021355600646756412951947947232138426913638718.42%29486.21%0901180749.86%830169848.88%46690351.61%12808661205411691353
6Croque-Morts22000000532110000003211100000021141.0005101500646756443519479472324615144610220.00%70100.00%0901180749.86%830169848.88%46690351.61%12808661205411691353
7Harvard220000001174110000006511100000052341.00011213200646756465519479472324813103811545.45%50100.00%0901180749.86%830169848.88%46690351.61%12808661205411691353
8Isotopes942210002924552120000161334210100013112120.6672954830064675642685194794723219267861686469.38%37683.78%0901180749.86%830169848.88%46690351.61%12808661205411691353
9Pacifiques de la route3111000013130110000006512011000078-130.50013233600646756488519479472326622235417635.29%9277.78%0901180749.86%830169848.88%46690351.61%12808661205411691353
10Riverman11000000312000000000001100000031221.000369006467564285194794723218116104250.00%3166.67%0901180749.86%830169848.88%46690351.61%12808661205411691353
11Snipers64101000211011421010001156220000001055100.83321385902646756414551947947232136456012825728.00%30680.00%1901180749.86%830169848.88%46690351.61%12808661205411691353
12Spoonman's43010000161153201000013941100000032170.8751629450064675641345194794723212128427025312.00%20575.00%0901180749.86%830169848.88%46690351.61%12808661205411691353
Total52309841001911405125165310009661352714453100957916770.740191347538036467564150251947947232125738949810463066019.61%2204081.82%2901180749.86%830169848.88%46690351.61%12808661205411691353
13Wolves44000000187112200000010192200000086281.0001834520164675641205194794723211428297426519.23%11372.73%0901180749.86%830169848.88%46690351.61%12808661205411691353
_Since Last GM Reset523890410019114051251653100096613527224-33100957916850.817191347538036467564150251947947232125738949810463066019.61%2204081.82%2901180749.86%830169848.88%46690351.61%12808661205411691353
_Vs Conference2820403100104861812723000048371116132-3310056497470.839104187291006467564844519479472326922142875781752916.57%1302481.54%1901180749.86%830169848.88%46690351.61%12808661205411691353
_Vs Division149202100504196312000021156861-2210029263230.8215089139006467564397519479472323301091553041021312.75%661084.85%0901180749.86%830169848.88%46690351.61%12808661205411691353

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
5277W919134753815021257389498104603
Tous les Matchs
GPWLOTWOTL TGFGA
52309418191140
Matchs locaux
GPWLOTWOTL TGFGA
251651039661
Matchs Éxtérieurs
GPWLOTWOTL TGFGA
271443159579
Derniers 10 Matchs
WLOTWOTL T
90001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
3066019.61%2204081.82%2
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
519479472326467564
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
901180749.86%830169848.88%46690351.61%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
12808661205411691353


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-09-212Banshees5Citadelles5TXR2Sommaire du Match
2 - 2020-09-228Banshees2Isotopes1WXSommaire du Match
3 - 2020-09-2314Isotopes3Banshees2LSommaire du Match
5 - 2020-09-2522Isotopes2Banshees4WSommaire du Match
6 - 2020-09-2629Banshees6Canadiens5WXSommaire du Match
7 - 2020-09-2732Banshees4Citadelles3WR2Sommaire du Match
8 - 2020-09-2839Citadelles2Banshees5WSommaire du Match
10 - 2020-09-3052As4Banshees3LSommaire du Match
11 - 2020-10-0158Banshees3Ailes Rouges3TXSommaire du Match
13 - 2020-10-0362Banshees1Chiefs6LSommaire du Match
15 - 2020-10-0569Snipers0Banshees3WSommaire du Match
17 - 2020-10-0779Banshees4Ailes Rouges2WSommaire du Match
19 - 2020-10-0984Snipers4Banshees3LSommaire du Match
21 - 2020-10-1193Canadiens3Banshees6WSommaire du Match
23 - 2020-10-1399Banshees3Chiefs3TXSommaire du Match
26 - 2020-10-16107Isotopes4Banshees4TXSommaire du Match
27 - 2020-10-17113Banshees2Pacifiques de la route3LSommaire du Match
29 - 2020-10-19120Croque-Morts2Banshees3WSommaire du Match
31 - 2020-10-21127Banshees3Wolves2WSommaire du Match
33 - 2020-10-23133As2Banshees6WSommaire du Match
35 - 2020-10-25139Banshees5Snipers3WSommaire du Match
37 - 2020-10-27147Harvard5Banshees6WSommaire du Match
39 - 2020-10-29156Ailes Rouges3Banshees7WSommaire du Match
42 - 2020-11-01164Banshees3Isotopes2WSommaire du Match
43 - 2020-11-02170Banshees3Citadelles4LXR2Sommaire du Match
44 - 2020-11-03175Banshees2Chiefs2TXSommaire du Match
46 - 2020-11-05181Pacifiques de la route5Banshees6WSommaire du Match
47 - 2020-11-06191As1Banshees0LSommaire du Match
49 - 2020-11-08197Banshees5Pacifiques de la route5TXSommaire du Match
50 - 2020-11-09204Ailes Rouges1Banshees2WSommaire du Match
52 - 2020-11-11211Banshees3Canadiens2WSommaire du Match
53 - 2020-11-12218Banshees2As4LSommaire du Match
55 - 2020-11-14223Spoonman's2Banshees5WSommaire du Match
56 - 2020-11-15230Banshees3Isotopes5LSommaire du Match
58 - 2020-11-17235Isotopes2Banshees4WSommaire du Match
59 - 2020-11-18242Banshees3Riverman1WSommaire du Match
61 - 2020-11-20252Chiefs5Banshees2LSommaire du Match
62 - 2020-11-21256Banshees3Spoonman's2WSommaire du Match
64 - 2020-11-23265Spoonman's3Banshees3TXSommaire du Match
66 - 2020-11-25274Snipers1Banshees2WXSommaire du Match
67 - 2020-11-26283Spoonman's4Banshees5WSommaire du Match
68 - 2020-11-27284Banshees4Citadelles3WXR2Sommaire du Match
71 - 2020-11-30298Isotopes2Banshees2TXSommaire du Match
72 - 2020-12-01302Banshees2Croque-Morts1WSommaire du Match
73 - 2020-12-02307Banshees5Snipers2WSommaire du Match
74 - 2020-12-03316Snipers0Banshees3WSommaire du Match
75 - 2020-12-04318Banshees5Isotopes3WSommaire du Match
77 - 2020-12-06330Wolves1Banshees6WSommaire du Match
78 - 2020-12-07334Banshees5Harvard2WSommaire du Match
79 - 2020-12-08342Banshees5Wolves4WSommaire du Match
80 - 2020-12-09347Wolves0Banshees4WSommaire du Match
82 - 2020-12-11356Banshees4Canadiens1WSommaire du Match
84 - 2020-12-13361Citadelles-Banshees-
86 - 2020-12-15370Banshees-Croque-Morts-
88 - 2020-12-17376Banshees-As-
90 - 2020-12-19380Harvard-Banshees-
92 - 2020-12-21389Citadelles-Banshees-
94 - 2020-12-23398Banshees-Wolves-
96 - 2020-12-25403Riverman-Banshees-
98 - 2020-12-27412Banshees-Isotopes-
100 - 2020-12-29417Riverman-Banshees-
101 - 2020-12-30425Banshees-Canadiens-
103 - 2021-01-01431Croque-Morts-Banshees-
105 - 2021-01-03440Banshees-Riverman-
106 - 2021-01-04444Banshees-Chiefs-
108 - 2021-01-06449Citadelles-Banshees-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
110 - 2021-01-08458Chiefs-Banshees-
112 - 2021-01-10469Banshees-Pacifiques de la route-
113 - 2021-01-11472Pacifiques de la route-Banshees-
115 - 2021-01-13484Harvard-Banshees-
118 - 2021-01-16496Wolves-Banshees-
119 - 2021-01-17503Banshees-Snipers-
120 - 2021-01-18506Banshees-Spoonman's-
121 - 2021-01-19512Ailes Rouges-Banshees-
122 - 2021-01-20520Banshees-Citadelles-
123 - 2021-01-21527Riverman-Banshees-
125 - 2021-01-23537Riverman-Banshees-
127 - 2021-01-25542Banshees-Harvard-
129 - 2021-01-27553Isotopes-Banshees-
130 - 2021-01-28558Banshees-Harvard-
133 - 2021-01-31566Canadiens-Banshees-
134 - 2021-02-01572Banshees-Croque-Morts-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
16 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
805,273$ 1,270,000$ 1,270,000$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
1,270,000$ 805,273$ 28 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 53 10,037$ 531,961$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT